
Open CASCADE Technology
7.0.0

Contribution Workflow

April 4, 2016

CONTENTS 1

Contents

1 Introduction . 2

1.1 Use of issue tracker system . 2

1.2 Access levels . 2

2 Standard workflow for an issue . 3

2.1 General scheme . 3

2.2 Issue registration . 4

2.3 Assigning the issue . 5

2.4 Resolving the issue . 5

2.4.1 Requirements to the code modification . 5

2.4.2 Providing a test case . 6

2.4.3 Updating user and developer guides . 6

2.4.4 Submission of change as a Git branch . 6

2.4.5 Requirements to the commit message . 7

2.4.6 Marking issue as resolved . 7

2.5 Code review . 7

2.6 Testing . 8

2.7 Integration of a solution . 8

2.8 Closing an issue . 9

3 Additional workflow elements . 10

3.1 Requesting more information or specific action . 10

3.2 Defining relationships between issues . 10

3.3 Submission of a change as a patch . 10

3.4 Updating branches in Git . 10

3.5 Minor corrections . 11

3.6 Handling non-reproducible issues . 11

4 Appendix: Issue attributes . 12

4.1 Category . 12

4.2 Severity . 12

4.3 Status . 13

4.4 Resolution . 13

(c) Open CASCADE 2016

1 Introduction 2

1 Introduction

The purpose of this document is to describe standard workflow for processing contributions to certified version of
OCCT.

1.1 Use of issue tracker system

Each contribution should have corresponding issue (bug, or feature, or integration request) registered in the Mantis-
BT issue tracker system accessible by URL http://tracker.dev.opencascade.org. The issue is pro-
cessed according to the described workflow.

1.2 Access levels

Access level defines the permissions of the user to view, register and modify issues in the issue tracker. The
correspondence of access level and user permissions is defined in the table below.

Access level Granted to Permissions Can set statuses
Viewer Everyone (anonymous

access)
View public issues only None

Updater Users registered on
dev.opencascade.org, in
Open CASCADE project

View and comment
issues

None

Reporter Users registered on
dev.opencascade.org, in
Community project

View, report, and
comment issues

New, Resolved,
Feedback

Developer OCC developers and (in
Community project)
external contributors who
signed the CLA

View, report, modify, and
handle issues

New, Assigned,
Resolved, Reviewed,
Feedback

Tester OCC engineer devoted to
certification testing

View, report, modify, and
handle issues

Assigned, Tested,
Feedback

Maintainer Person responsible for a
project or OCCT
component

View, report, modify, and
handle issues

New, Resolved,
Reviewed, Tested,
Closed, Feedback

Bugmaster Person responsible for
Mantis issue tracker,
integrations, certification,
and releases

Full access All statuses

According to his access level, the user can participate in the issue handling process under different roles, as
described below.

(c) Open CASCADE 2016

2 Standard workflow for an issue 3

2 Standard workflow for an issue

2.1 General scheme

YES,xbug

Reporterx
providesx
morexinfo

Not clear: morexinfo
requested

Developerxresolvesx
thexissue

Reporterxregistersxanxissue

New

Resolved

Maintainer
checks

thexdescription

Feedback

YES,xfixed

Reporter isxnotxsatisfiedx
withx thexfix

YES,xfixed,xnoxregressions

Testerx isxnotxsatisfiedx
withxthexfix

Integratorxmergesxthexfixxtoxtrunk

Testerxverifiesxthexsolution

Tested

Integrationxtoxthextrunk
Verified

Fixed?

Conflictx?

YES,xfixed

Assigned

Reviewer verifiesxthexsolution
Reviewer isxnotx
satisfiedxwithxthexfix

Good?

Reviewed

KxResolution
Deliveryxofxthexrelease
Closed

YES,xcodexisxgood

Reporterxcanxre-checkxthexfix
OK?

Conflictxwithxotherx
changexisxdetected

YES,xfixxprovidedClear?
Fixxprovided?

Figure 1: Standard life cycle of an issue

(c) Open CASCADE 2016

2.2 Issue registration 4

2.2 Issue registration

An issue is registered in Mantis bugtracker by the Reporter with definition of the necessary attributes (see also
Appendix: Issue attributes (p. 12)):

Category – indicates the OCCT component, to which the issue relates. (If in doubt, assign to OCCT:Foundation
Classes.)

Severity – indicates the impact of the issue in the context where it was discovered.

Profile – specifies the configuration, on which the problem was detected. For specific configurations it is possible to
specify separately platform, OS, and version. These fields can be left empty if the issue is not configuration-specific.
Additional details relevant for the environment where the issue is reproduced (such as compiler version, bitness,
etc.) can be provided in the Description.

Products Version – defines the OCCT version, on which the problem has been detected.

It is preferable to indicate the version of the earliest known official release where the problem can be reproduced. If
the issue is reported on the current development version of OCCT, the current development version should be used
(for convenience, this version is marked by asterisk in Mantis).

Note

OCCT version number can be consulted in the file Standard_Version.hxx (value of OCC_VERSION_COMPL-
ETE macro).

Assign to – developer to whom the issue will be assigned. By default, it is set to Maintainer of the OCCT component
selected in Category field.

Target Version – defines the target version for the fix to be provided. By default, it is set to the current version under
development.

Summary – a short, one sentence description of the issue.

The Summary has a limit of 128 characters. It should be informative and useful for the developers. It is not allowed
to mention the issue originator, and in particular the customer, in the name of the registered issue.

A good practice is to start the issue with indication of the relevant component (OCCT module, package, class etc.)
to better represent its context.

The summary should be given in imperative mood when it can be formulated as goal to be achieved or action to be
done. In particular, this applies to feature requests and improvements, for instance:

Visualization - provide a support of zoom persistent selection

If the issue reports a problem, the summary should be given in Present Simple. If reported problem is believed to
be a regression, it is recommended to indicate this in the summary, like this:

[Regression in 6.9.0] IGES - Export of a reversed face leads to wrong data

Description – should contain a detailed definition of the nature of the registered issue depending on its type.

For a bug it is required to submit a detailed description of the incorrect behavior, including the indication of the cause
of the problem (if known at this stage), and details on the context where the issue has been detected.

For a feature or integration request it is necessary to describe the proposed feature in details (as much as possible
at that stage), including the changes required for its implementation and the main features of the new functionality.

Example:

Currently selection does not work correctly for non-zoomable objects (those defined using transform
persistence). To provide correct selection for such objects, first-level (object) BVH structures must be
updated on each camera change, and frustum must be rebuilt accordingly.

(c) Open CASCADE 2016

2.3 Assigning the issue 5

Note

In the description and notes to the issues you can refer to another issue by its ID prefixed by number sign (e.g.:
#12345), and refer to a note by its ID prefixed by tilde (e.g.: ∼20123). These references will be expanded by
Mantis into links to the corresponding issue or note. When the number sign or the tilde followed by digits are
a part of a normal text, add a space before digits (e.g.: "face # 12345 contains ∼ 1000 edges") to avoid this
conversion.

Steps To Reproduce – allows describing in detail how to reproduce the issue.

This information is crucial for the developer to investigate the cause of the problem and to create the test case. The
optimal approach is to give a sequence of DRAW Test Harness commands to reproduce the problem in DRAW.
This information can also be provided as a DRAW Tcl script attached to the issue (in Upload File field).

Additional information and documentation updates – any additional information, remarks to be taken into ac-
count in Release Notes, etc..

Upload File – allows attaching the shapes, snapshots, scripts, documents, or modified source files of OCCT.

This field can be used to attach a prototype test case in form of a Tcl script for DRAW, a C++ code which can
be organized in DRAW commands, sample shapes, documents describing proposed change or analysis of the
problem, or other data required for reproduction of the issue. Where applicable, pictures demonstrating a problem
and/or desired result can be attached.

The newly registered issue gets status NEW and is assigned to the person indicated in the Assign to field.

2.3 Assigning the issue

The description of the new issue is checked by the Maintainer and if it is feasible, he may assign the issue to a
Developer. Alternatively, any user with Developer access level or higher can assign the issue to himself if he wants
to provide a solution.

The recommended way to handle contributions is that the Reporter assigns the issue to himself and provides a
solution.

The Maintainer or Bugmaster can close or reassign the issue (in FEEDBACK state) to the Reporter after it has
been registered, if its description does not contain sufficient details to reproduce the bug or explain the need of the
new feature. That decision shall be documented in the comments to the issue in the Bugtracker.

The assigned issue has status ASSIGNED.

2.4 Resolving the issue

The Developer responsible for the issue assigned to him provides a solution including:

• Changes in the code, with appropriate comments;

• Test case (when applicable) and data necessary for its execution;

• Changes in the user and developer guides (when necessary).

The change is integrated to branch named CRxxxxx (where xxxxx is issue number) in the OCCT Git repository,
based on current master, and containing a single commit with the appropriate description. Then the issue is switched
to RESOLVED for further review and testing.

The following sub-sections describe this process, relevant requirements and options, in more details.

2.4.1 Requirements to the code modification

The amount of code affected by the change should be limited to the changes required for the bug fix or improvement.
Change of layout or re-formatting of the existing code is allowed only in the parts where meaningful changes related
to the issue have been made.

(c) Open CASCADE 2016

2.4 Resolving the issue 6

Note

If deemed useful, re-formatting or cosmetic changes affecting considerable parts of the code can be made
within a dedicated issue.

The changes should comply with the OCCT Codng Rules. It is especially important to comment the code properly
so that other people can understand it easier.

The modification should be tested by running OCCT tests (on the platform and scope available to Developer) and
ensuring absence of regressions. In case if modification affects results of some existing test case and the new
result is correct, such test case should be updated to report OK (or BAD), as descibed in Automated Test System /
Interpretation of Test Results.

2.4.2 Providing a test case

For modifications affecting OCCT functionality, a test case should be created (unless already exists) and included
in the commit or patch. See Automated Test System / Creating a New Test for relevant instructions.

The data files required for a test case should be attached to the corresponding issue in Mantis (i.e. not included in
the commit).

When the test case cannot be provided for any reason, the maximum possible information on how the problem can
be reproduced and how to check the fix should be provided in the Steps to Reproduce field of an issue.

2.4.3 Updating user and developer guides

If the change affects a functionality described in User Guides, the corresponding user guide should be updated to
reflect the change.

If the change affects OCCT test system, build environment, or development tools described in Developer Guides,
the corresponding guide should be updated.

The changes that break compatibility with the previous versions of OCCT (i.e. affecting API or behavior of existing
functionality in the way that may require update of existing applications based on an earlier official release of OCCT
to work correctly) should be described in the document Upgrade from previous OCCT versions. It is recommended
to add a sub-section for each change described. The description should provide the explanation of the incompatibil-
ity introduced by the change, and describe how it can be resolved (at least, in known situations). When feasible, the
automatic upgrade procedure (adm/upgrade.tcl) can be extended by a new option to perform the required upgrade
of the dependent code automatically.

2.4.4 Submission of change as a Git branch

The modification of sources should be provided in the dedicated branch of the official OCCT Git repository.

The branch should contain a single commit, with the appropriate commit message (see Requirements to the
commit message (p. 7) below).

In general, this branch should be based on the recent version of the master branch. It is highly preferable to submit
changes basing on the current master. In case if the fix is implemented on the previous release of OCCT, the branch
can be based on the corresponding tag in Git, instead of the master.

The branch name should be composed of letters CR (abbreviation of "Change Request") followed by the issue ID
number (without leading zeros). It is possible to add an optional suffix to the branch name after the issue ID, e.g. to
distinguish between several versions of the fix (see Updating branches in Git (p. 10)).

See Guide to using GIT for help.

Note

When a branch with the name given according to the above rule is pushed to Git, a note is automatically
added to the corresponding issue in Mantis, indicating the person who has made the push, the commit hash,
and (for new commits) the description.

(c) Open CASCADE 2016

2.5 Code review 7

2.4.5 Requirements to the commit message

The commit message posted in Git constitutes an integral part of both the fix and the release documentation.

The first line of the commit message should contain the Summary of the issue (starting with its ID followed by colon,
e.g. "0022943: Bug in TDataXtd_PatternStd"), followed by an empty line.

The following lines should provide a description of the context and details on the changes made. The contents and
the recommended structure of the description depend on the nature of the bug.

In a general case, the following elements should be present:

• Problem – a description of the unwanted behavior;

• Change – a description of the implemented changes, including the names of involved classes / methods /
enumerations etc.;

• Result – a description of the current behavior (after the implementation).

Example:

0026330: BRepOffsetAPI_ThruSections creates invalid shape.
Methods BRep_Tool::CurveOnSurface() and BRepCheck_Edge::InContext() now properly handle

parametric range on a 3D curve when it is used to generate a p-curve dynamically (on a planar surface)
and both the surface and the 3D curve have non-null locations.

Provide sufficient context so that potential user of the affected functionality can understand what has been changed
and how the algorithm works now. Describe reason and essence of the changes made, but do not go too deep into
implementation details – these should be reflected in comments in the code.

2.4.6 Marking issue as resolved

To mark the change as ready for review and testing, the corresponding issue should be switched to RESOLVED
state. By default, the issue gets assigned to the Maintainer of the component, who is thus responsible for its review.
Alternatively, another person can be selected as a reviewer at this step.

When the issue is switched to RESOLVED, it is required to update or fill the field Steps to reproduce. The possible
variants are:

• The name of an existing or new test case (preferred variant);

• A sequence of DRAW commands;

• N/A (Not required / Not possible / Not applicable);

• Reference to an issue in the bug tracker of another project.

2.5 Code review

The Reviewer analyzes the proposed solution for applicability in accordance with OCCT Coding Rules and exam-
ines all changes in the sources, test case(s), and documentation to detect obvious and possible errors, misprints,
or violations of the coding style.

If the Reviewer detects some problems, he can either:

• Fix these issues and provide a new solution. The issue can then be switched to REVIEWED.

In case of doubt or possible disagreement the Reviewer can reassign the issue (in RESOLVED state) to the
Developer, who then becomes a Reviewer. Possible disagreements should be resolved through discussion,
which is done normally within issue notes (or on the OCCT developer’s forum if necessary).

(c) Open CASCADE 2016

2.6 Testing 8

• Reassign the issue back to the Developer, providing detailed list of remarks. The issue then gets status
ASSIGNED and a new solution should be provided.

If Reviewer does not detect any problems, or provides a corrected version, he changes status to REVIEWED. The
issue gets assigned to the Bugmaster.

2.6 Testing

The issues that are in REVIEWED state are subject of certification (non-regression) testing. The issue is assigned
to an OCCT Tester when he starts processing it.

If the branch submitted for testing is based on obsolete status of the master branch, Tester rebases (p. 10) it on
master HEAD. In case of conflicts, the issue is assigned back to Developer in FEEDBACK status, requesting for a
rebase.

Certification testing includes:

• Addition of new data models (if required for a new test case) to the data base;

• Revision of the new test case(s) added by developer, and changes in the existing test cases included in
commit. The Tester can amend tests to ensure their correct behavior in the certification environment.

• Building OCCT on a sub-set of supported configurations (OS and compiler), watching for errors and warnings;

• Execution of tests on sub-set of supported platforms (at least, one Windows and one Linux configuration),
watching for regressions;

• Building OCCT samples, watching for errors;

• Building and testing of OCC products based on OCCT.

If the Tester does not detect problems or regressions, he changes the status to TESTED for further integration.

If the Tester detects build problems or regressions, he changes the status to ASSIGNED and reassigns the issue
to the Developer with a detailed description of the problems. The Developer should analyze the reported problems
and, depending on results of this analysis, either:

• Confirm that the detected problems are expected changes and they should be accepted as a new status of
the code. Then the issue should be switched to FEEDBACK and assigned to the Bugmaster.

• Produce a new solution (see Resolving the issue (p. 5), and also Minor corrections (p. 11)).

2.7 Integration of a solution

Before integration into the master branch of the repository the Integrator checks the following conditions:

• the change has been reviewed;

• the change has been tested without regressions (or with regressions treated properly);

• the test case has been created for this issue (when applicable), and the change has been rechecked on this
test case;

• the change does not conflict with other changes integrated previously.

If the result of check is successful the Integrator integrates the solution into the branch. The integrations are
performed weekly; integration branches are named following the pattern IR-YYYY-MM-DD.

Each change is integrated as a single commit without preserving the history of changes made in the branch (by
rebase, squashing all intermediate commits if any), however, preserving the author when possible. This is done to
have the master branch history plain and clean. The following picture illustrates the process:

(c) Open CASCADE 2016

2.8 Closing an issue 9

Figure 2: Integration of several branches

The new integration branch is tested against possible regressions that might appear due to interference between
separate changes. When the tests are OK, the integration branch is pushed as the new master to the official
repository. The issue status is set then to VERIFIED and is assigned to the Reporter so that he could check the fix
as integrated.

The branches corresponding to the integrated fixes are removed from the repository by the Bugmaster.

2.8 Closing an issue

When possible, the Reporter should check whether the problem is actually resolved in the environment where it
has been discovered, after the fix is integrated to master. If the fix does not actually resolve the original problem,
the issue in VERIFIED status can be reopened and assigned back to the Developer for rework. The details on how
to check that the issue is still reproducible should be provided. However, if the issue does resolve the problem as
described in the original report, but a similar problem is discovered for another input data or configuration, or the fix
has caused a regression, that problem should be registered as a separate (related (p. 10)) issue.

If the fix integrated to master causes regressions, Bugmaster can revert it and reopen the issue.

The Bugmaster closes the issue after the regular OCCT Release, provided that the issue status is VERIFIED and
the change was actually included in the release. The final issue state is CLOSED.

The field Fixed in Version of the issue is set to the OCCT version where it is fixed.

(c) Open CASCADE 2016

3 Additional workflow elements 10

3 Additional workflow elements

3.1 Requesting more information or specific action

If, at any step of the issue lifetime, the person responsible for it cannot process it due to absence of required
information, expertise, or rights, he can switch it to status FEEDBACK and assign to the person who is (presumably)
able to resolve the block. Some examples of typical situations where FEEDBACK is used are:

• The Maintainer or the Developer requests for more information from the Reporter to reproduce the issue;

• The Tester requests the Developer or the Maintainer to help him in the interpretation of testing results;

• The Developer or the Maintainer asks the Bugmaster to close the issue that is found irrelevant or already
fixed (see Handling non-reproducible issues (p. 11)).

In general, issues with status FEEDBACK should be processed as fast as possible, to avoid unjustified delays.

3.2 Defining relationships between issues

When two or more issues are related to each other, this relationship should be reflected in the issue tracker. It is
also highly recommended to add a note to explain the relationship. Typical cases of relationships are:

• Issue A is caused by previous fix made for issue B (A is a child of B);

• Issue A describes the same problem as issue B (A is a duplicate of B);

• Issues A and B relate to the same piece of code, functionality etc., in the sense that the fix for one of these
issues will affect the other (A is related to B)

When the fix made for one issue also resolves another one, these issues should be marked as related or duplicate.
In general, the duplicate issue should have the same status, and, when closed, be marked as fixed in the same
OCCT version, as the main one.

3.3 Submission of a change as a patch

In some cases (if Git is not accessible for the contributor), external contributions can be submitted as a patch file
(generated by diff command) or as modified sources attached to the Mantis issue. The OCCT version, for which
the patch is generated, should be clearly specified (e.g. as hash code of Git commit if the patch is based on an
intermediate state of the master).

Note

Such contributions should be put to Git by someone else (e.g. the Reviewer), this may cause delay in their
processing.

3.4 Updating branches in Git

Updates of the existing branch (e.g. taking into account the remarks of the Reviewer, or fixing regressions) should
be provided as new commits on top of previous state of the branch.

It is allowed to rebase the branch on the new state of the master and push it to the repository under the same name
(with –force option) provided that the original sequence of commits is preserved.

When a change is squashed into a single commit (e.g. to be submitted for review), it should be pushed into a branch
a with different name.

The recommended approach is to add a numeric suffix (index) indicating the version of the change, e.g. "CR12345-
_5". Usually it is worth keeping a non-squashed branch in Git for reference.

To avoid confusions, the branch corresponding to the latest version of the change should have a greater index.

(c) Open CASCADE 2016

3.5 Minor corrections 11

Note

Make sure to revise the commit message after squashing a branch, to keep it meaningful and comprehensive.

3.5 Minor corrections

In some cases review remarks or results of testing require only minor corrections to be done in the branch containing
a change. "Minor" implies that the correction does not impact the functionality and does not affect the description of
the previously committed change.

As an exception to general single-commit rule (p. 6), it is allowed to put such minor corrections on top of the existing
branch as a separate commit, and re-submit it for further processing in the same branch, without squashing.

Minor commits should have a single-line message starting with //. These messages will be ignored when the branch
is squashed at integration.

Typical cases of minor corrections are:

• Amendments of test cases (including those made by the Tester to adjust a test script to a specific platform);

• Trivial corrections of compilation warnings (such as removal of an unused variable);

• Addition or correction of comments or documentation;

• Corrections of code formatting (e.g. reversion of irrelevant formatting changes made in the main commit).

3.6 Handling non-reproducible issues

Investigation of each issue starts with reproducing it on current development version (master).

If it cannot be reproduced on the current master, but can be reproduced on one of previous releases (or previous
state of the master), it is considered as solved by a change made for another issue. If that "fixing" issue can
be identified (e.g. by parsing Git log), it should be set as related to that issue. The issue should be switched to
FEEDBACK and assigned to the Bugmaster for further processing.

The Bugmaster decides whether it is necessary to create a test case for that issue, and if so may assign it to the
Developer or the Tester to create a test. The issue then follows the standard workflow.

Otherwise, if the issue is fixed in one of previous releases, the Bugmaster closes it setting the appropriate value in
Fixed in Version field, or, if the issue is fixed after the last release, switches it to VERIFIED status.

If the issue cannot be reproduced due to an unclear description, missing data, etc., it should be assigned back
to the Reporter in FEEDBACK status, requesting for more information. The Reporter should provide additional
information within one month; after that time, if no new information is provided, the issue should be closed by the
Bugmaster with resolution Unable to reproduce.

(c) Open CASCADE 2016

4 Appendix: Issue attributes 12

4 Appendix: Issue attributes

4.1 Category

The category corresponds to the component of OCCT where the issue is found:

Category Component
OCCT:Foundation Classes Foundation Classes module
OCCT:Modeling Data Modeling Data classes
OCCT:Modeling Algorithms Modeling Algorithms, except shape healing and

meshing
OCCT:Shape Healing Shape Healing component (TKShapeHealing)
OCCT:Mesh BRepMesh algorithm
OCCT:Data Exchange Data Exchange module
OCCT:Visualization Visualization module
OCCT:Application Framework OCAF
OCCT:DRAW DRAW Test Harness
OCCT:Tests Automatic Test System
OCCT:Documentation Documentation
OCCT:Coding General code quality
OCCT:Configuration Configuration, build system, etc.
OCCT:Releases Official OCCT releases
Website:Tracker OCCT Mantis issue tracker,

tracker.dev.opencascade.org
Website:Portal OCCT development portal, dev.opencascade.org
Website:Git OCCT Git repository, git.dev.opencascade.org

4.2 Severity

Severity shows at which extent the issue affects the product. The list of used severities is given in the table below
in the descending order.

Severity Description
crash Crash of the application or OS, loss of data
block Regression corresponding to the previously delivered

official version. Impossible operation of a function on
any data with no work-around. Missing function
previously requested in software requirements
specification. Destroyed data.

major Impossible operation of a function with existing
work-around. Incorrect operation of a function on a
particular dataset. Impossible operation of a function
after intentional input of incorrect data. Incorrect
behavior of a function after intentional input of
incorrect data.

minor Incorrect behavior of a function corresponding to the
description in software requirements specification.
Insufficient performance of a function.

tweak Ergonomic inconvenience, need of light updates.
text Non-conformance of the program code to the Coding

Rules, mistakes and non-functional errors in the
source text (e.g. unnecessary variable declarations,
missing comments, grammatical errors in user
manuals).

(c) Open CASCADE 2016

4.3 Status 13

trivial Cosmetic issues.
feature Request for a new feature or improvement.
integration request Requested integration of an existing feature into the

product.
just a question A question to be processed, without need of any

changes in the product.

4.3 Status

The bug statuses that can be applied to the issues are listed in the table below.

Status Description
New A new, just registered issue.
Acknowledged Can be used to mark the issue as postponed.
Confirmed Can be used to mark the issue as postponed.
Feedback The issue requires more information or a specific

action.
Assigned Assigned to a developer.
Resolved The issue has been fixed, and now is waiting for

review.
Reviewed The issue has been reviewed, and now is waiting for

testing (or being tested).
Tested The fix has been internally tested by the tester with

success on the full non-regression database or its
part and a test case has been created for this issue.

Verified The fix has been integrated into the master of the
corresponding repository

Closed + resolution The fix has been integrated to the master. The
corresponding test case has been executed
successfully. The issue is no longer reproduced.

4.4 Resolution

Resolution is set when the bug is closed. "Reopen" resolution is added automatically when the bug is reopened.

Resolution Description
Open The issue is pending.
Fixed The issue has been successfully fixed.
Reopened The bug has been reopened because of insufficient

fix or regression.
Unable to reproduce The bug is not reproduced.
Not fixable The bug cannot be fixed because e.g. it is a bug of

third party software, OS or hardware limitation, etc.
Duplicate The bug for the same issue already exists in the

tracker.
Not a bug It is a normal behavior in accordance with the

specification of the product.
No change required The issue didn’t require any change of the product,

such as a question issue.
Suspended The issue is postponed (for Acknowledged status).
Documentation updated The documentation has been updated to resolve a

misunderstanding causing the issue.

(c) Open CASCADE 2016

4.4 Resolution 14

Won’t fix It is decided to keep the existing behavior.

(c) Open CASCADE 2016

	Introduction
	Use of issue tracker system
	Access levels

	Standard workflow for an issue
	General scheme
	Issue registration
	Assigning the issue
	Resolving the issue
	Requirements to the code modification
	Providing a test case
	Updating user and developer guides
	Submission of change as a Git branch
	Requirements to the commit message
	Marking issue as resolved

	Code review
	Testing
	Integration of a solution
	Closing an issue

	Additional workflow elements
	Requesting more information or specific action
	Defining relationships between issues
	Submission of a change as a patch
	Updating branches in Git
	Minor corrections
	Handling non-reproducible issues

	Appendix: Issue attributes
	Category
	Severity
	Status
	Resolution

