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1 Introduction

This document provides a comprehensive description of the Boolean Operation Algorithm (BOA) as it is imple-
mented in Open CASCADE Technology. The Boolean Component contains:

• General Fuse Operator (GFA),

• Boolean Operator (BOA),

• Section Operator (SA),

• Partition Operator (PA).

GFA is the base algorithm for BOA, PA, SA.

GFA has a history-based architecture designed to allow using OCAF naming functionality. The architecture of GFA
is expandable, that allows creating new algorithms basing on it.

(c) Open CASCADE 2016
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2 Overview

2.1 Operators

2.1.1 Boolean operator

The Boolean operator provides the operations (Common, Fuse, Cut) between two groups: Objects and Tools. Each
group consists of an arbitrary number of arguments in terms of TopoDS_Shape.

The operator can be represented as:

RB =Bj (G1 , G2 ),

where:

• RB – result of the operation;

• Bj – operation of type j (Common, Fuse, Cut);

• G1 ={S11 , S12 ... S1n1 } group of arguments (Objects);

• G2 ={S21 , S22 ... S2n2 } group of arguments (Tools);

• n1 – Number of arguments in Objects group;

• n2 – Number of arguments in Tools group.

Note There is an operation Cut21, which is an extension for forward Cut operation, i.e Cut21=Cut(G2, G1).

2.1.2 General Fuse operator

The General fuse operator can be applied to an arbitrary number of arguments in terms of TopoDS_Shape.

The GFA operator can be represented as:

RGF = GF (S1 , S2 ... Sn ),

where

• RGF – result of the operation,

• S1 , S2 ... Sn – arguments of the operation,

• n – number of arguments.

The result of the Boolean operator, RB , can be obtained from RGF .

For example, for two arguments S1 and S2 the result RGF is

RGF = GF (S1 , S2 ) = Sp1 + Sp2 + Sp12

(c) Open CASCADE 2016
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S1 

S2 

Sp1 

Sp2 

Sp12 

Figure 1: Operators

This Figure shows that

• Bcommon (S1 , S2 ) = Sp12 ;

• Bcut12 (S1 , S2 ) = Sp1 ;

• Bcut21 (S1 , S2 ) = Sp2 ;

• Bfuse (S1 , S2 ) = Sp1 +Sp2 +Sp12

RGF =GF (S1 , S2 ) = Bfuse = Bcommon + Bcut12 + Bcut21 .

The fact that RGF contains the components of RB allows considering GFA as the general case of BOA. So it is
possible to implement BOA as a subclass of GFA.

2.1.3 Partition operator

The Partition operator can be applied to an arbitrary number of arguments in terms of TopoDS_Shape. The argu-
ments are divided on two groups: Objects, Tools. The result of PA contains all parts belonging to the Objects but
does not contain the parts that belongs to the Tools only.

The PA operator can be represented as follows:

RPA =PA (G1 , G2 ), where:

• RPA – is the result of the operation;

• G1 ={S11 , S12 ... S1n1 } group of arguments (Objects);

• G2 ={S21 , S22 ... S2n2 } group of arguments (Tools);

• n1 – Number of arguments in Objects group;

• n2 – Number of arguments in Tools group.

The result RPA can be obtained from RGF .

For example, for two arguments S1 and S2 the result RPA is

RPA =PA(S1 ,S2 )=Sp1 +Sp12 .

In case when all arguments of the PA are Objects (no Tools), the result of PA is equivalent to the result of GFA.

(c) Open CASCADE 2016
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For example, when G1 consists of shapes S1 and S2 the result of RPA is

RPA =PA(S1 , S2 ) = Sp1 + Sp2 + Sp12 = GF (S1 , S2 )

The fact that the RGF contains the components of RPA allows considering GFA as the general case of PA. Thus,
it is possible to implement PA as a subclass of GFA.

2.1.4 Section operator

The Section operator SA can be applied to arbitrary number of arguments in terms of TopoDS_Shape. The result
of SA contains vertices and edges in accordance with interferences between the arguments The SA operator can
be represented as follows: RSA =SA(S1, S2. . . Sn), where

• RSA – the operation result;

• S1, S2 ... Sn – the operation arguments;

• n – the number of arguments.

2.2 Parts of algorithms

GFA, BOA, PA and SA have the same Data Structure (DS). The main goal of the Data Structure is to store all
necessary information for input data and intermediate results.

The operators consist of two main parts:

• Intersection Part (IP). The main goal of IP is to compute the interferences between sub-shapes of arguments.
The IP uses DS to retrieve input data and store the results of intersections.

• Building Part (BP). The main goal of BP is to build required result of an operation. This part also uses DS to
retrieve data and store the results.

As it follows from the definition of operator results, the main differences between GFA, BOA, PA and SA are in the
Building Part. The Intersection Part is the same for the algorithms.

(c) Open CASCADE 2016
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3 Terms and Definitions

This chapter provides the background terms and definitions that are necessary to understand how the algorithms
work.

3.1 Interferences

There are two groups of interferences.

At first, each shape having a boundary representation (vertex, edge, face) has an internal value of geometrical
tolerance. The shapes interfere with each other in terms of their tolerances. The shapes that have a boundary
representation interfere when there is a part of 3D space where the distance between the underlying geometry of
shapes is less or equal to the sum of tolerances of the shapes. Three types of shapes: vertex, edge and face –
produce six types of BRep interferences:

• Vertex/Vertex,

• Vertex/Edge,

• Vertex/Face,

• Edge/Edge,

• Edge/Face and

• Face/Face.

At second, there are interferences that occur between a solid Z1 and a shape S2 when Z1 and S2 have no BRep
interferences but S2 is completely inside of Z1. These interferences are Non-BRep interferences. There are four
possible cases:

• Vertex/Solid,

• Edge/Solid,

• Face/Solid and

• Solid/Solid.

3.1.1 Vertex/Vertex interference

For two vertices Vi and Vj, the distance between their corresponding 3D points is less than the sum of their toler-
ances Tol(Vi) and Tol(Vj).

Tol(Vi) Tol(Vj) 

Vj Vi 

T s 

  

D 

Tol(Vn)

Vn 

Pn 

Figure 2: Vertex/vertex interference

The result is a new vertex Vn with 3D point Pn and tolerance value Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center and the radius of the sphere enclosing the
tolerance spheres of the source vertices (V1, V2).

(c) Open CASCADE 2016
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3.1.2 Vertex/Edge interference

For a vertex Vi and an edge Ej, the distance D between 3D point of the vertex and its projection on the 3D curve of
edge Ej is less or equal than sum of tolerances of vertex Tol(Vi) and edge Tol(Ej).

Ej 

Vi 

Tol(Ej) 

Tol(Vi) 

Vi 

Cj

Tol(Vi) 

ti 
PPi 

Pi 

Figure 3: Vertex/edge interference

The result is vertex Vi with the corresponding tolerance value Tol(Vi)=Max(Tol(Vi), D+Tol(Ej)), where D = distance
(Pi, PPi);

and parameter ti of the projected point PPi on 3D curve Cj of edge Ej.

3.1.3 Vertex/Face interference

For a vertex Vi and a face Fj the distance D between 3D point of the vertex and its projection on the surface of the
face is less or equal than sum of tolerances of the vertex Tol(Vi) and the face Tol(Fj).

Tol(Vi) 

Fj 

Vi Pi 

PPi 

2·Tol(Fj) 

Tol(Vi) 

Fj 

Vi Pi 

PPi 

u 

v

 

vi 

ui 

 

Figure 4: Vertex/face interference

The result is vertex Vi with the corresponding tolerance value Tol(Vi)=Max(Tol(Vi), D+Tol(Fj)), where D = distance
(Pi, PPi)

and parameters ui , vi of the projected point PPi on surface Sj of face Fj.

(c) Open CASCADE 2016
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3.1.4 Edge/Edge interference

For two edges Ei and Ej (with the corresponding 3D curves Ci and Cj) there are some places where the distance
between the curves is less than (or equal to) sum of tolerances of the edges.

Let us examine two cases:

In the first case two edges have one or several common parts of 3D curves in terms of tolerance.

Ej 

Tol(Ej) Tol(Ei) 

E

i2 

Ej 

Ei 

t j2
 tj1 

Cj 

j2

i

i1V

V

V

i

Vi2

j2

C

t

tj1
Vj1

Figure 5: Edge/edge interference: common parts

The results are:

• Parametric range [ti1 , ti2 ] for 3D curve Ci of edge Ei.

• Parametric range [tj1 , tj2 ] for 3D curve Cj of edge Ej.

In the second case two edges have one or several common points in terms of tolerance.

(c) Open CASCADE 2016
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Ej 

Tol(Ej) 

Ei 

Tol(Ei) 

Ej 

Ei 

tj 

C j

Vn Tol(Vn) 

Ci 

 

 

 

 

ti 

Figure 6: Edge/edge interference: common points

The result is a new vertex Vn with 3D point Pn and tolerance value Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center and the radius of the sphere enclosing the
tolerance spheres of the corresponding nearest points Pi, Pj of 3D curves Ci, Cj of source edges Ei, Ej.

• Parameter ti of Pi for the 3D curve Ci.

• Parameter tj of Pj for the 3D curve Cj.

3.1.5 Edge/Face interference

For an edge Ei (with the corresponding 3D curve Ci) and a face Fj (with the corresponding 3D surface Sj) there
are some places in 3D space, where the distance between Ci and surface Sj is less than (or equal to) the sum of
tolerances of edge Ei and face Fj.

Let us examine two cases:

In the first case Edge Ei and Face Fj have one or several common parts in terms of tolerance.
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Tol(Ei) 

Fj 

2·Tol(Fj) 

Ei 

Fj 
Ei 

Ci

ti2 

t i1
 

Figure 7: Edge/face interference: common parts

The result is a parametric range [ti1 , ti2 ] for the 3D curve Ci of the edge Ei.

In the second case Edge Ei and Face Fj have one or several common points in terms of tolerance.
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Tol(Ei) 

Fj 

2·Tol(Fj) 

Ei 

Fj 

Ei 

Tol(Vn) 

Vn 

Ci 

ti 

Figure 8: Edge/face interference: common points

The result is a new vertex Vn with 3D point Pn and tolerance value Tol(Vn).

The coordinates of Pn and the value Tol(Vn) are computed as the center and the radius of the sphere enclosing the
tolerance spheres of the corresponding nearest points Pi, Pj of 3D curve Ci and surface Sj of source edges Ei, Fj.

• Parameter ti of Pi for the 3D curve Ci.

• Parameters ui and vi of the projected point PPi on the surface Sj of the face Fj.

3.1.6 Face/Face Interference

For a face Fi and a face Fj (with the corresponding surfaces Si and Sj) there are some places in 3D space, where
the distance between the surfaces is less than (or equal to) sum of tolerances of the faces.

(c) Open CASCADE 2016
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Tol(Cijk) 
Fi 

2·Tol(Fj) 

2·Tol(Fi) 

Fj 
Cijk 

Figure 9: Face/face interference: common curves

In the first case the result contains intersection curves Cijk (k = 0, 1, 2. . . kN , where kN is the number of intersection
curves with corresponding values of tolerances Tol(Cijk ).

Tol(Vijm) 

Fi 

2·Tol(Fj) 

2·Tol(Fi) 

Fj 

Vijm 

Figure 10: Face/face interference: common points

In the second case Face Fi and face Fj have one or several new vertices Vijm , where m=0,1,2, ... mN, mN is the
number of intersection points.

The coordinates of a 3D point Pijm and the value Tol(Vijm ) are computed as the center and the radius of the
sphere enclosing the tolerance spheres of the corresponding nearest points Pi, Pj of the surface Si, Sj of source
shapes Fi, Fj.

• Parameters uj , vj belong to point PPj projected on surface Sj of face Fj.

• Parameters ui and vi belong to point PPi projected on surface Si of face Fi.
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3.1.7 Vertex/Solid Interference

For a vertex Vi and a solid Zj there is Vertex/Solid interference if the vertex Vi has no BRep interferences with any
sub-shape of Zj and Vi is completely inside the solid Zj.

Figure 11: Vertex/Solid Interference

3.1.8 Edge/Soild Interference

For an edge Ei and a solid Zj there is Edge/Solid interference if the edge Ei and its sub-shapes have no BRep
interferences with any sub-shape of Zj and Ei is completely inside the solid Zj.
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Figure 12: Edge/Solid Interference

3.1.9 Face/Soild Interference

For a face Fi and a solid Zj there is Face/Solid interference if the face Fi and its sub-shapes have no BRep interfer-
ences with any sub-shape of Zj and Fi is completely inside the solid Zj.

Figure 13: Face/Solid Interference
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3.1.10 Solid/Soild Interference

For a solid Zi and a solid Zj there is Solid/Solid interference if the solid Zi and its sub-shapes have no BRep
interferences with any sub-shape of Zj and Zi is completely inside the solid Zj.

Figure 14: Solid/Solid Interference

3.1.11 Computation Order

The interferences between shapes are computed on the basis of increasing of the dimension value of the shape in
the following order:

• Vertex/Vertex,

• Vertex/Edge,

• Edge/Edge,

• Vertex/Face,

• Edge/Face,

• Face/Face,

• Vertex/Solid,

• Edge/Solid,

• Face/Solid,

• Solid/Solid.

This order allows avoiding the computation of redundant interferences between upper-level shapes Si and Sj when
there are interferences between lower sub-shapes Sik and Sjm.
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3.2 Paves 20

3.1.12 Results

• The result of the interference is a shape that can be either interfered shape itself (or its part) or a new shape.

• The result of the interference is a shape with the dimension value that is less or equal to the minimal dimension
value of interfered shapes. For example, the result of Vertex/Edge interference is a vertex, but not an edge.

• The result of the interference splits the source shapes on the parts each time as it can do that.

3.2 Paves

The result of interferences of the type Vertex/Edge, Edge/Edge and Edge/Face in most cases is a vertex (new or
old) lying on an edge.

The result of interferences of the type Face/Face in most cases is intersection curves, which go through some
vertices lying on the faces.

The position of vertex Vi on curve C can be defined by a value of parameter ti of the 3D point of the vertex on the
curve. Pave PVi on curve C is a structure containing the vertex Vi and correspondent value of the parameter ti of
the 3D point of the vertex on the curve. Curve C can be a 3D or a 2D curve.

PVb 

E 

C 

PVe 

PVi 
ti 

te 

tb=0 

Ve Vb 

Vi 

Figure 15: Paves

Two paves PV1 and PV2 on the same curve C can be compared using the parameter value

PV1 > PV2 if t1 > t2

The usage of paves allows binding of the vertex to the curve (or any structure that contains a curve: edge, intersec-
tion curve).

3.3 Pave Blocks

A set of paves PVi (i=1, 2...nPV), where nPV is the number of paves] of curve C can be sorted in the increasing
order using the value of parameter t on curve C.

A pave block PBi is a part of the object (edge, intersection curve) between neighboring paves.
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Figure 16: Pave Blocks

Any finite source edge E has at least one pave block that contains two paves PVb and PVe:

• Pave PVb corresponds to the vertex Vb with minimal parameter tb on the curve of the edge.

• Pave PVe corresponds to the vertex Ve with maximal parameter te on the curve of the edge.

3.4 Shrunk Range

Pave block PV of curve C is bounded by vertices V1 and V2 with tolerance values Tol(V1) and Tol(V2). Curve C has
its own tolerance value Tol(C):

• In case of edge, the tolerance value is the tolerance of the edge.

• In case of intersection curve, the tolerance value is obtained from an intersection algorithm.

V1 

V2 

C(t)

Tol(V2) 
Tol(V1) Tol(C) 

t1C 

t2C t2S t1S

 

  

P1 

P2 

P2C 

P1C 

Figure 17: Shrunk Range

The theoretical parametric range of the pave block is [t1C, t2C].

The positions of the vertices V1 and V2 of the pave block can be different. The positions are determined by the
following conditions:
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Distance (P1, P1c) is equal or less than Tol(V1) + Tol(C)
Distance (P2, P2c) is equal or less than Tol(V2) + Tol(C)

The Figure shows that each tolerance sphere of a vertex can reduce the parametric range of the pave block to a
range [t1S, t2S]. The range [t1S, t2S] is the shrunk range of the pave block.

The shrunk range of the pave block is the part of 3D curve that can interfere with other shapes.

3.5 Common Blocks

The interferences of the type Edge/Edge, Edge/Face produce results as common parts.

In case of Edge/Edge interference the common parts are pave blocks that have different base edges.

E1 

E2 

V11 V12 

V21 V22

CB 

PB2 

PB1 

Figure 18: Common Blocks: Edge/Edge interference

If the pave blocks PB1 , PB2 . . . PBNbPB , where NbPB is the number of pave blocks have the same bounding
vertices and geometrically coincide, the pave blocks form common block CB.

In case of Edge/Face interference the common parts are pave blocks lying on a face(s).

V11 
PB 

F2 

F3 

E1 

CB 

Vi 

Vj 

Figure 19: Common Blocks: Edge/Face interference

If the pave blocks PBi geometrically coincide with a face Fj, the pave blocks form common block CB.

In general case a common block CB contains:

• Pave blocks PBi (i=0,1,2, 3. . . NbPB).

• A set of faces Fj (j=0,1... NbF), NbF – number of faces.
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3.6 FaceInfo

The structure FaceInfo contains the following information:

• Pave blocks that have state In for the face;

• Vertices that have state In for the face;

• Pave blocks that have state On for the face;

• Vertices that have state On for the face;

• Pave blocks built up from intersection curves for the face;

• Vertices built up from intersection points for the face.

F1 

F2 

F3 

Ex 

Vin1 
PBon11 

PBon12 PBon2 PBon31 

PBon32 

PBon4 

PBin1 PBsc1 
E1 

E2 

E3 

E4 V1 

V2 V3 

V4 

V5 

V6  

Figure 20: Face Info

In the figure, for face F1:

• Pave blocks that have state In for the face: PBin1 .

• Vertices that have state In for the face: Vin1 .

• Pave blocks that have state On for the face: PBon11 , PBon12 , PBon2 , PBon31 , PBon32 , PBon4 .

• Vertices that have state On for the face: V1, V2, V3, V4, V5, V6.

• Pave blocks built up from intersection curves for the face: PBsc1 .

• Vertices built up from intersection points for the face: none
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4 Data Structure

Data Structure (DS) is used to:

• Store information about input data and intermediate results;

• Provide the access to the information;

• Provide the links between the chunks of information.

This information includes:

• Arguments;

• Shapes;

• Interferences;

• Pave Blocks;

• Common Blocks.

Data Structure is implemented in the class BOPDS_DS.

4.1 Arguments

The arguments are shapes (in terms of TopoDS_Shape):

• Number of arguments is unlimited.

• Each argument is a valid shape (in terms of BRepCheck_Analyzer).

• Each argument can be of one of the following types (see the Table):

No Type Index of Type
1 COMPOUND 0
2 COMPSOLID 1
3 SOLID 2
4 SHELL 3
5 FACE 4
6 WIRE 5
7 EDGE 6
8 VERTEX 7

• The argument of type 0 (COMPOUND) can include any number of shapes of an arbitrary type (0, 1. . . 7).

• The argument should not be self-interfered, i.e. all sub-shapes of the argument that have geometrical coinci-
dence through any topological entities (vertices, edges, faces) must share these entities.

• There are no restrictions on the type of underlying geometry of the shapes. The faces or edges of arguments
Si can have underlying geometry of any type supported by Open CASCADE Technology modeling algorithms
(in terms of GeomAbs_CurveType and GeomAbs_SurfaceType).

• The faces or edges of the arguments should have underlying geometry with continuity that is not less than
C1.

4.2 Shapes

The information about Shapes is stored in structure BOPDS_ShapeInfo. The objects of type BOPDS_ShapeInfo
are stored in the container of array type. The array allows getting the access to the information by an index (DS
index). The structure BOPDS_ShapeInfo has the following contents:
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Name Contents
myShape Shape itself
myType Type of shape
myBox 3D bounding box of the shape
mySubShapes List of DS indices of sub-shapes
myReference Storage for some auxiliary information
myFlag Storage for some auxiliary information

4.3 Interferences

The information about interferences is stored in the instances of classes that are inherited from class BOPDS_Interf.

Name Contents
BOPDS_Interf Root class for interference
Index1 DS index of the shape 1
Index2 DS index of the shape 2
BOPDS_InterfVV Storage for Vertex/Vertex interference
BOPDS_InterfVE Storage for Vertex/Edge interference
myParam The value of parameter of the point of the vertex on

the curve of the edge
BOPDS_InterfVF Storage for Vertex/Face interference
myU, myV The value of parameters of the point of the vertex on

the surface of the face
BOPDS_InterfEE Storage for Edge/Edge interference
myCommonPart Common part (in terms of IntTools_CommonPart )
BOPDS_InterfEF Storage for Edge/Face interference
myCommonPart Common part (in terms of IntTools_CommonPart )
BOPDS_InterfFF Storage for Face/Face interference
myTolR3D, myTolR2D The value of tolerances of curves (points) reached in

3D and 2D
myCurves Intersection Curves (in terms of BOPDS_Curve)
myPoints Intersection Points (in terms of BOPDS_Point)
BOPDS_InterfVZ Storage for Vertex/Solid interference
BOPDS_InterfEZ Storage for Edge/Solid interference
BOPDS_InterfFZ Storage for Face/Solid interference
BOPDS_InterfZZ Storage for Solid/Solid interference

The Figure shows inheritance diagram for BOPDS_Interf classes.
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Figure 21: BOPDS_Interf classes
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4.4 Pave, PaveBlock and CommonBlock

The information about the pave is stored in objects of type BOPDS_Pave.
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Name Contents
BOPDS_Pave
myIndex DS index of the vertex
myParam Value of the parameter of the 3D point of vertex on

curve.

The information about pave blocks is stored in objects of type BOPDS_PaveBlock.

Name Contents
BOPDS_PaveBlock
myEdge DS index of the edge produced from the pave block
myOriginalEdge DS index of the source edge
myPave1 Pave 1 (in terms of BOPDS_Pave)
myPave2 Pave 2 (in terms of BOPDS_Pave)
myExtPaves The list of paves (in terms of BOPDS_Pave) that is

used to store paves lying inside the pave block during
intersection process

myCommonBlock The reference to common block (in terms of
BOPDS_CommonBlock) if the pave block is a
common block

myShrunkData The shrunk range of the pave block

• To be bound to an edge (or intersection curve) the structures of type BOPDS_PaveBlock are stored in one
container of list type (BOPDS_ListOfPaveBlock).

• In case of edge, all the lists of pave blocks above are stored in one container of array type. The array allows
getting the access to the information by index of the list of pave blocks for the edge. This index (if exists) is
stored in the field myReference.

The information about common block is stored in objects of type BOPDS_CommonBlock.

Name Contents
BOPDS_CommonBlock
myPaveBlocks The list of pave blocks that are common in terms of

Common Blocks (p. 22)
myFaces The list of DS indices of the faces, on which the pave

blocks lie.

4.5 Points and Curves

The information about intersection point is stored in objects of type BOPDS_Point.

Name Contents
BOPDS_Point
myPnt 3D point
myPnt2D1 2D point on the face1
myPnt2D2 2D point on the face2

The information about intersection curve is stored in objects of type BOPDS_Curve.

Name Contents
BOPDS_Curve
myCurve The intersection curve (in terms of IntTools_Curve )
myPaveBlocks The list of pave blocks that belong to the curve
myBox The bounding box of the curve (in terms of Bnd_Box )

4.6 FaceInfo

The information about FaceInfo is stored in a structure BOPDS_FaceInfo. The structure BOPDS_FaceInfo has the
following contents.
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Name Contents
BOPDS_FaceInfo
myPaveBlocksIn Pave blocks that have state In for the face
myVerticesIn Vertices that have state In for the face
myPaveBlocksOn Pave blocks that have state On for the face
myVerticesOn Vertices that have state On for the face
myPaveBlocksSc Pave blocks built up from intersection curves for the

face
myVerticesSc Vertices built up from intersection points for the face +

The objects of type BOPDS_FaceInfo are stored in one container of array type. The array allows getting the access
to the information by index. This index (if exists) is stored in the field myReference.
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5 Intersection Part

Intersection Part (IP) is used to

• Initialize the Data Structure;

• Compute interferences between the arguments (or their sub-shapes);

• Compute same domain vertices, edges;

• Build split edges;

• Build section edges;

• Build p-curves;

• Store all obtained information in DS.

IP is implemented in the class BOPAlgo_PaveFiller.

BOPAlgo_Algo

 

 
BOPAlgo_PaveFiller

 

 

 

 

Figure 22: Diagram for Class BOPAlgo_PaveFiller

5.1 Class BOPAlgo_Algo

The class BOPAlgo_Algo provides the base interface for all algorithms to provide the possibility to:

• Get Error status;

• Get Warning status;

• Turn on/off the parallel processing

• Break the operations by user request

• Check data;

• Check the result;

• Set the appropriate memory allocator.

The description provided in the next paragraphs is coherent with the implementation of the method BOPAlgo_Pave-
Filler::Perform().

5.2 Initialization

The input data for the step is the Arguments. The description of initialization step is shown in the Table.
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No Contents Implementation
1 Initialization the array of shapes (in

terms of Shapes (p. 24)). Filling
the array of shapes.

BOPDS_DS::Init()

2 Initialization the array pave blocks
(in terms of Pave, PaveBlock,
CommonBlock (p. 26))

BOPDS_DS::Init()

3 Initialization of intersection Iterator.
The intersection Iterator is the
object that computes intersections
between sub-shapes of the
arguments in terms of bounding
boxes. The intersection Iterator
provides approximate number of
the interferences for given type (in
terms of Interferences (p. 10))

BOPDS_Iterator

4 Initialization of intersection
Context. The intersection Context
is an object that contains
geometrical and topological toolkit
(classifiers, projectors, etc). The
intersection Context is used to
cache the tools to increase the
algorithm performance.

IntTools_Context

5.3 Compute Vertex/Vertex Interferences

The input data for this step is the DS after the Initialization (p. 29). The description of this step is shown in the table
:

No Contents Implementation
1 Initialize array of Vertex/Vertex

interferences.
BOPAlgo_PaveFiller::PerformVV()

2 Access to the pairs of interfered
shapes (nVi, nVj)k, k=0, 1. . . nk,
where nVi and nVj are DS indices
of vertices Vi and Vj and nk is the
number of pairs.

BOPDS_Iterator

3 Compute the connexity chains of
interfered vertices nV1C, nV2C. . .
nVnC)k, C=0, 1. . . nCs, where nCs
is the number of the connexity
chains

BOPAlgo_Tools::MakeBlocksCnx()

4 Build new vertices from the chains
VNc. C=0, 1. . . nCs.

BOPAlgo_PaveFiller::PerformVV()

5 Append new vertices in DS. BOPDS_DS::Append()
6 Append same domain vertices in

DS.
BOPDS_DS::AddShapeSD()

7 Append Vertex/Vertex
interferences in DS.

BOPDS_DS::AddInterf()

• The pairs of interfered vertices are: (nV11, nV12), (nV11, nV13), (nV12, nV13), (nV13, nV15), (nV13, nV14),
(nV14, nV15), (nV21, nV22), (nV21, nV23), (nV22, nV23);

• These pairs produce two chains: (nV11, nV12, nV13, nV14, nV15) and (nV21, nV22, nV23);

• Each chain is used to create a new vertex, VN1 and VN2, correspondingly.

The example of connexity chains of interfered vertices is given in the image:
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V11 

V12 

V13 

V14 

V15 

V21 

V22 

V23 

VN1 
VN2 

Chain 1 Chain 2

Figure 23: Connexity chains of interfered vertices

5.4 Compute Vertex/Edge Interferences

The input data for this step is the DS after computing Vertex/Vertex interferences.

No Contents Implementation
1 Initialize array of Vertex/Edge

interferences
BOPAlgo_PaveFiller::PerformVE()

2 Access to the pairs of interfered
shapes (nVi, nEj)k k=0, 1. . . nk,
where nVi is DS index of vertex Vi,
nEj is DS index of edge Ej and nk
is the number of pairs.

BOPDS_Iterator

3 Compute paves. See Vertex/Edge
Interference (p. 11)

BOPInt_Context::ComputeVE()

4 Initialize pave blocks for the edges
Ej involved in the interference

BOPDS_DS::
ChangePaveBlocks()

5 Append the paves into the pave
blocks in terms of Pave,
PaveBlock and CommonBlock
(p. 26)

BOPDS_PaveBlock::
AppendExtPave()

6 Append Vertex/Edge interferences
in DS

BOPDS_DS::AddInterf()

5.5 Update Pave Blocks

The input data for this step is the DS after computing Vertex/Edge Interferences.

No Contents Implementation
1 Each pave block PB containing

internal paves is split by internal
paves into new pave blocks PBN1,
PBN2. . . PBNn. PB is replaced by
new pave blocks PBN1, PBN2. . .
PBNn in the DS.

BOPDS_DS:: UpdatePaveBlocks()

5.6 Compute Edge/Edge Interferences

The input data for this step is the DS after updating Pave Blocks.
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No Contents Implementation
1 Initialize array of Edge/Edge

interferences
BOPAlgo_PaveFiller::PerformEE()

2 Access to the pairs of interfered
shapes (nEi, nEj)k, k=0, 1. . . nk,
where nEi is DS index of the edge
Ei, nEj is DS index of the edge Ej
and nk is the number of pairs.

BOPDS_Iterator

3 Initialize pave blocks for the edges
involved in the interference, if it is
necessary.

BOPDS_DS::
ChangePaveBlocks()

4 Access to the pave blocks of
interfered shapes: (PBi1,
PBi2. . . PBiNi) for edge Ei and
(PBj1, PBj2. . . PBjNj) for edge Ej

BOPAlgo_PaveFiller::PerformEE()

5 Compute shrunk data for pave
blocks in terms of Pave,
PaveBlock and CommonBlock
(p. 26), if it is necessary.

BOPAlgo_PaveFiller::FillShrunk-
Data()

6 Compute Edge/Edge interference
for pave blocks PBix and PBiy.
The result of the computation is a
set of objects of type
IntTools_CommonPart

IntTools_EdgeEdge

7.1 For each CommonPart of type
VERTEX: Create new vertices VNi
(i =1, 2. . . ,NbVN), where NbVN is
the number of new vertices.
Intersect the vertices VNi using the
steps Initialization and compute
Vertex/Vertex interferences as
follows: a) create a new object
PFn of type BOPAlgo_PaveFiller
with its own DS; b) use new
vertices VNi (i=1, 2. . . ,NbVN),
NbVN as arguments (in terms of
TopoDs_Shape) of PFn; c) invoke
method Perform() for PFn. The
resulting vertices VNXi (i=1,
2. . . ,NbVNX), where NbVNX is the
number of vertices, are obtained
via mapping between VNi and the
results of PVn.

BOPTools_Tools::MakeNew-
Vertex()
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7.2 For each CommonPart of type
EDGE: Compute the coinciding
connexity chains of pave blocks
(PB1C, PB2C. . . PNnC)k, C=0,
1. . . nCs, where nCs is the number
of the connexity chains. Create
common blocks (CBc. C=0,
1. . . nCs) from the chains. Attach
the common blocks to the pave
blocks.

BOPAlgo_Tools::PerformCommon-
Blocks()

8 Post-processing. Append the
paves of VNXi into the
corresponding pave blocks in
terms of Pave, PaveBlock and
CommonBlock (p. 26)

BOPDS_PaveBlock::
AppendExtPave()

9 Split common blocks CBc by the
paves.

BOPDS_DS::
UpdateCommonBlock()

10 Append Edge/Edge interferences
in the DS.

BOPDS_DS::AddInterf()

The example of coinciding chains of pave blocks is given in the image:

Figure 24: Coinciding chains of pave blocks

• The pairs of coincided pave blocks are: (PB11, PB12), (PB11, PB13), (PB12, PB13), (PB21, PB22), (PB21,
PB23), (PB22, PB23).

• The pairs produce two chains: (PB11, PB12, PB13) and (PB21, PB22, PB23).

5.7 Compute Vertex/Face Interferences

The input data for this step is the DS after computing Edge/Edge interferences.
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No Contents Implementation
1 Initialize array of Vertex/Face

interferences
BOPAlgo_PaveFiller::PerformVF()

2 Access to the pairs of interfered
shapes (nVi, nFj)k, k=0, 1. . . nk,
where nVi is DS index of the vertex
Vi, nFj is DS index of the edge Fj
and nk is the number of pairs.

BOPDS_Iterator

3 Compute interference See
Vertex/Face Interference (p. 11)

BOPInt_Context::ComputeVF()

4 Append Vertex/Face interferences
in the DS

BOPDS_DS::AddInterf()

5 Repeat steps 2-4 for each new
vertex VNXi (i=1, 2. . . ,NbVNX),
where NbVNX is the number of
vertices.

BOPAlgo_PaveFiller::Treat-
VerticesEE()

5.8 Compute Edge/Face Interferences

The input data for this step is the DS after computing Vertex/Face Interferences.
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No Contents Implementation
1 Initialize array of Edge/Face

interferences
BOPAlgo_PaveFiller::PerformEF()

2 Access to the pairs of interfered
shapes (nEi, nFj)k, k=0, 1. . . nk,
where nEi is DS index of edge Ei,
nFj is DS index of face Fj and nk is
the number of pairs.

BOPDS_Iterator

3 Initialize pave blocks for the edges
involved in the interference, if it is
necessary.

BOPDS_DS::ChangePaveBlocks()

4 Access to the pave blocks of
interfered edge (PBi1,
PBi2. . . PBiNi) for edge Ei

BOPAlgo_PaveFiller::PerformEF()

5 Compute shrunk data for pave
blocks (in terms of Pave,
PaveBlock and CommonBlock
(p. 26)) if it is necessary.

BOPAlgo_PaveFiller::FillShrunk-
Data()

6 Compute Edge/Face interference
for pave block PBix, and face nFj.
The result of the computation is a
set of objects of type
IntTools_CommonPart

IntTools_EdgeFace

7.1 For each CommonPart of type
VERTEX: Create new vertices VNi
(i=1, 2. . . ,NbVN), where NbVN is
the number of new vertices. Merge
vertices VNi as follows: a) create
new object PFn of type
BOPAlgo_PaveFiller with its own
DS; b) use new vertices VNi (i=1,
2. . . ,NbVN), NbVN as arguments
(in terms of TopoDs_Shape) of
PFn; c) invoke method Perform()
for PFn. The resulting vertices
VNXi (i=1, 2. . . ,NbVNX), where
NbVNX is the number of vertices,
are obtained via mapping between
VNi and the results of PVn.

BOPTools_Tools::MakeNew-
Vertex() and
BOPAlgo_PaveFiller::Perform-
Vertices1()

7.2 For each CommonPart of type
EDGE: Create common blocks
(CBc. C=0, 1. . . nCs) from pave
blocks that lie on the faces. Attach
the common blocks to the pave
blocks.

BOPAlgo_Tools::PerformCommon-
Blocks()

8 Post-processing. Append the
paves of VNXi into the
corresponding pave blocks in
terms of Pave, PaveBlock and
CommonBlock (p. 26).

BOPDS_PaveBlock::
AppendExtPave()
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9 Split pave blocks and common
blocks CBc by the paves.

BOPAlgo_PaveFiller::Perform-
Vertices1(), BOPDS_DS::
UpdatePaveBlock() and
BOPDS_DS::
UpdateCommonBlock()

10 Append Edge/Face interferences
in the DS

BOPDS_DS::AddInterf()

11 Update FaceInfo for all faces
having EF common parts.

BOPDS_DS:: UpdateFaceInfoIn()

5.9 Build Split Edges

The input data for this step is the DS after computing Edge/Face Interferences.

For each pave block PB take the following steps:

No Contents Implementation
1 Get the real pave block PBR,

which is equal to PB if PB is not a
common block and to PB1 if PB is
a common block. PB1 is the first
pave block in the pave blocks list of
the common block. See Pave,
PaveBlock and CommonBlock
(p. 26).

BOPAlgo_PaveFiller::MakeSplit-
Edges()

2 Build the split edge Esp using the
information from DS and PBR.

BOPTools_Tools::MakeSplitEdge()

3 Compute BOPDS_ShapeInfo
contents for Esp

BOPAlgo_PaveFiller::MakeSplit-
Edges()

4 Append BOPDS_ShapeInfo
contents to the DS

BOPDS_DS::Append()

5.10 Compute Face/Face Interferences

The input data for this step is DS after building Split Edges.

No Contents Implementation
1 Initialize array of Face/Face

interferences
BOPAlgo_PaveFiller::PerformFF()

2 Access to the pairs of interfered
shapes (nFi, nFj)k, k=0, 1. . . nk,
where nFi is DS index of edge Fi,
nFj is DS index of face Fj and nk is
the number of pairs.

BOPDS_Iterator

3 Compute Face/Face interference IntTools_FaceFace
4 Append Face/Face interferences in

the DS.
BOPDS_DS::AddInterf()

5.11 Build Section Edges

The input data for this step is the DS after computing Face/Face interferences.
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No Contents Implementation
1 For each Face/Face interference

nFi, nFj, retrieve FaceInfo (p. 27).
Create draft vertices from
intersection points VPk (k=1, 2. . . ,
NbVP), where NbVP is the number
of new vertices, and the draft
vertex VPk is created from an
intersection point if VPk Vm (m =
0, 1, 2. . . NbVm), where Vm is an
existing vertex for the faces nFi
and nF,j (On or In in terms of
TopoDs_Shape), NbVm is the
number of vertices existing on
faces nFi and nF,j and – means
non-coincidence in terms of
Vertex/Vertex interference
(p. 10).

BOPAlgo_PaveFiller::Make-
Blocks()

2 For each intersection curve Cijk
2.1 Create paves PVc for the curve

using existing vertices, i.e. vertices
On or In (in terms of FaceInfo) for
faces nFi and nFj. Append the
paves PVc

BOPAlgo_PaveFiller::PutPaveOn-
Curve() and
BOPDS_PaveBlock::AppendExt-
Pave()

2.2 Create technological vertices Vt,
which are the bounding points of
an intersection curve (with the
value of tolerance Tol(Cijk)). Each
vertex Vt with parameter Tt on
curve Cijk forms pave PVt on curve
Cijk. Append technological paves.

BOPAlgo_PaveFiller::PutBound-
PaveOnCurve()

2.3 Create pave blocks PBk for the
curve using paves (k=1, 2. . . ,
NbPB), where NbPB is the number
of pave blocks

BOPAlgo_PaveFiller::Make-
Blocks()

2.4 Build draft section edges ESk
using the pave blocks (k=1, 2. . . ,
NbES), where NbES is the number
of draft section edges The draft
section edge is created from a
pave block PBk if PBk has state In
or On for both faces nFi and nF,j
and PBk PBm (m=0, 1, 2. . .
NbPBm), where PBm is an
existing pave block for faces nFi
and nF,j (On or In in terms of
FaceInfo), NbVm is the number of
existing pave blocks for faces nFi
and nF,j and – means
non-coincidence (in terms of
Vertex/Face interference (p. 11)).

BOPTools_Tools::MakeEdge()
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3 Intersect the draft vertices VPk
(k=1, 2. . . , NbVP) and the draft
section edges ESk (k=1, 2. . . ,
NbES). For this: a) create new
object PFn of type
BOPAlgo_PaveFiller with its own
DS; b) use vertices VPk and edges
ESk as arguments (in terms of
Arguments (p. 24)) of PFn; c)
invoke method Perform() for PFn.
Resulting vertices VPXk (k=1, 2. . .
NbVPX) and edges ESXk (k=1,
2. . . NbESX) are obtained via
mapping between VPk, ESk and
the results of PVn.

BOPAlgo_PaveFiller::PostTreatF-
F()

4 Update face info (sections about
pave blocks and vertices)

BOPAlgo_PaveFiller::PerformFF()

5.12 Build P-Curves

The input data for this step is the DS after building section edges.

No Contents Implementation
1 For each Face/Face interference

nFi and nFj build p-Curves on nFi
and nFj for each section edge
ESXk.

BOPAlgo_PaveFiller::MakeP-
Curves()

2 For each pave block that is
common for faces nFi and nFj
build p-Curves on nFi and nFj.

BOPAlgo_PaveFiller::MakeP-
Curves()

5.13 Process Degenerated Edges

The input data for this step is the DS after building P-curves.

No Contents Implementation
For each degenerated edge ED
having vertex VD

BOPAlgo_PaveFiller::ProcessDE()

1 Find pave blocks PBi (i=1,2. . .
NbPB), where NbPB is the number
of pave blocks, that go through
vertex VD.

BOPAlgo_PaveFiller::FindPave-
Blocks()

2 Compute paves for the
degenerated edge ED using a 2D
curve of ED and a 2D curve of PBi.
Form pave blocks PBDi (i=1,2. . .
NbPBD), where NbPBD is the
number of the pave blocks for the
degenerated edge ED

BOPAlgo_PaveFiller::FillPaves()

(c) Open CASCADE 2016



5.13 Process Degenerated Edges 39

3 Build split edges ESDi
(i=1,2. . . NbESD), where ESD is
the number of split edges, using
the pave blocks PBDi

BOPAlgo_PaveFiller::
MakeSplitEdge()
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6 General description of the Building Part

Building Part (BP) is used to

• Build the result of the operation

• Provide history information (in terms of ::Generated(), ::Modified() and ::IsDeleted()) BP uses the DS prepared
by BOPAlgo_PaveFiller described at chapter 5 as input data. BP is implemented in the following classes:

• BOPAlgo_Builder – for the General Fuse operator (GFA).

• BOPAlgo_BOP – for the Boolean Operation operator (BOA).

• BOPAlgo_Section – for the Section operator (SA).

BOPAlgo_BuilderShape
 

BOPAlgo_Algo 

BOPAlgo_Builder 

 

BOPAlgo_BOP
 

BOPAlgo_Section

Figure 25: Diagram for BP classes

The class BOPAlgo_BuilderShape provides the interface for algorithms that have:

• A Shape as the result;

• History information (in terms of ::Generated(), ::Modified() and ::IsDeleted()).
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7 General Fuse Algorithm

7.1 Arguments

The arguments of the algorithm are shapes (in terms of TopoDS_Shape). The main requirements for the arguments
are described in Data Structure (p. 24) chapter.

7.2 Results

During the operation argument Si can be split into several parts Si1, Si2. . . Si1NbSp, where NbSp is the number of
parts. The set (Si1, Si2. . . Si1NbSp) is an image of argument Si.

• The result of the General Fuse operation is a compound. Each sub-shape of the compound corresponds
to the certain argument shape S1, S2. . . Sn and has shared sub-shapes in accordance with interferences
between the arguments.

• For the arguments of the type EDGE, FACE, SOLID the result contains split parts of the argument.

• For the arguments of the type WIRE, SHELL, COMPSOLID, COMPOUND the result contains the image of the
shape of the corresponding type (i.e. WIRE, SHELL, COMPSOLID or COMPOUND). The types of resulting
shapes depend on the type of the corresponding argument participating in the operation. See the table below:

No Type of argument Type of resulting shape Comments
1 COMPOUND COMPOUND The resulting

COMPOUND is built from
images of sub-shapes of
type COMPOUND
COMPSOLID, SHELL,
WIRE and VERTEX.
Sets of split sub-shapes
of type SOLID, FACE,
EDGE.

2 COMPSOLID COMPSOLID The resulting
COMPSOLID is built
from split SOLIDs.

3 SOLID Set of split SOLIDs
4 SHELL SHELL The resulting SHELL is

built from split FACEs
5 FACE Set of split FACEs
6 WIRE WIRE The resulting WIRE is

built from split EDGEs
7 EDGE Set of split EDGEs
8 VERTEX VERTEX

7.3 Examples

Please, have a look at the examples, which can help to better understand the definitions.

7.3.1 Case 1: Three edges intersecting at a point

Let us consider three edges: E1, E2 and E3 that intersect in one 3D point.
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E1 

E2 
E3 

Vn1 

E31 

E11 

E21 

E12 

E22 
E32 

Figure 26: Three Intersecting Edges

The result of the GFA operation is a compound containing 6 new edges: E11, E12, E21, E22, E31, and E32. These
edges have one shared vertex Vn1.

In this case:

• The argument edge E1 has resulting split edges E11 and E12 (image of E1).

• The argument edge E2 has resulting split edges E21 and E22 (image of E2).

• The argument edge E3 has resulting split edges E31 and E32 (image of E3).

7.3.2 Case 2: Two wires and an edge

Let us consider two wires W1 (Ew11, Ew12, Ew13) and W2 (Ew21, Ew22, Ew23) and edge E1.

E1 W1 

W2 

Ew21 

Ew22 

Ew23 

Ew11 

Ew12 

Ew13 

E11 Wn1 

W2 

Ew11 Ew13 

Ew21 
Ew23 

E12 

En1 En2 En3 En4

Vn1 

Figure 27: Two wires and an edge

The result of the GF operation is a compound consisting of 2 wires: Wn1 (Ew11, En1, En2, En3, Ew13) and Wn2
(Ew21, En2, En3, En4, Ew23) and two edges: E11 and E12.

In this case :

• The argument W1 has image Wn1.
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• The argument W2 has image Wn2.

• The argument edge E1 has split edges E11 and E12. (image of E1). The edges En1, En2, En3, En4 and
vertex Vn1 are new shapes created during the operation. Edge Ew12 has split edges En1, En2 and En3 and
edge Ew22 has split edges En2, En3 and En4.

7.3.3 Case 3: An edge intersecting with a face

Let us consider edge E1 and face F2:

E1 

F2 

F21 

E11 E12 

E12 

Figure 28: An edge intersecting with a face

The result of the GF operation is a compound consisting of 3 shapes:

• Split edge parts E11 and E12 (image of E1).

• New face F21 with internal edge E12 (image of F2).

7.3.4 Case 4: An edge lying on a face

Let us consider edge E1 and face F2:

E1 

F2 

F21 

F22 

E12 

E12 

E11 E13 

Figure 29: An edge lying on a face

The result of the GF operation is a compound consisting of 5 shapes:

• Split edge parts E11, E12 and E13 (image of E1).

• Split face parts F21 and F22 (image of F2).
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7.3.5 Case 5: An edge and a shell

Let us consider edge E1 and shell Sh2 that consists of 2 faces: F21 and F22

 

F21 

F22 

E1 E11 

E14 

F212 

F222 

F211 

F221 

E13 

E12 

Figure 30: An edge and a shell

The result of the GF operation is a compound consisting of 5 shapes:

• Split edge parts E11, E12 , E13 and E14 (image of E1).

• Image shell Sh21 (that contains split face parts F211, F212, F221 and F222).

7.3.6 Case 6: A wire and a shell

Let us consider wire W1 (E1, E2, E3, E4) and shell Sh2 (F21, F22).

Sh2 F21 

F22 W1 

F212 

F222 

F211 

F221 

F223 

F213 

W11 

Sh2 

E11 E12 

E13 E14 

Sh21 

E1 E2 

E3 E4 

Sh2

Figure 31: A wire and a shell

The result of the GF operation is a compound consisting of 2 shapes:

• Image wire W11 that consists of split edge parts from wire W1: E11, E12, E13 and E14.

• Image shell Sh21 that contains split face parts: F211, F212, F213, F221, F222 and F223.
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7.3.7 Case 7: Three faces

Let us consider 3 faces: F1, F2 and F3.

Figure 32: Three faces

The result of the GF operation is a compound consisting of 7 shapes:

• Split face parts: Fn1, Fn2, Fn3, Fn4, Fn5, Fn6 and Fn7.

7.3.8 Case 8: A face and a shell

Let us consider shell Sh1 (F11, F12, F13) and face F2.

Figure 33: A face and a shell

The result of the GF operation is a compound consisting of 4 shapes:
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• Image shell Sh11 that consists of split face parts from shell Sh1: Fn1, Fn2, Fn3, Fn4, Fn5 and Fn6.

• Split parts of face F2: Fn3, Fn6 and Fn7.

7.3.9 Case 9: A shell and a solid

Let us consider shell Sh1 (F11, F12. . . F16) and solid So2.

Figure 34: A shell and a solid: arguments

The result of the GF operation is a compound consisting of 2 shapes:

• Image shell Sh11 consisting of split face parts of Sh1: Fn1, Fn2 ... Fn8.

• Solid So21 with internal shell. (image of So2).
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Figure 35: A shell and a solid: results

7.3.10 Case 10: A compound and a solid

Let us consider compound Cm1 consisting of 2 solids So11 and So12) and solid So2.

Figure 36: A compound and a solid: arguments

The result of the GF operation is a compound consisting of 4 shapes:

• Image compound Cm11 consisting of split solid parts from So11 and So12 (Sn1, Sn2, Sn3, Sn4).

• Split parts of solid So2 (Sn2, Sn3, Sn5).
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Figure 37: A compound and a solid: results

7.4 Class BOPAlgo_Builder

GFA is implemented in the class BOPAlgo_Builder.

7.4.1 Fields

The main fields of the class are described in the Table:

Name Contents
myPaveFiller Pointer to the BOPAlgo_PaveFiller object
myDS Pointer to the BOPDS_DS object
myContext Pointer to the intersection Context
myImages The Map between the source shape and its images
myShapesSD The Map between the source shape (or split part of

source shape) and the shape (or part of shape) that
will be used in result due to same domain property.

7.4.2 Initialization

The input data for this step is a BOPAlgo_PaveFiller object (in terms of Intersection (p. 29)) at the state after
Processing of degenerated edges (p. 38) with the corresponding DS.

No Contents Implementation
1 Check the readiness of the DS and

BOPAlgo_PaveFiller.
BOPAlgo_Builder::CheckData()

2 Build an empty result of type
Compound.

BOPAlgo_Builder::Prepare()

7.4.3 Build Images for Vertices

The input data for this step is BOPAlgo_Builder object after Initialisation.
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No Contents Implementation
1 Fill myShapesSD by SD vertices

using the information from the DS.
BOPAlgo_Builder::FillImages-
Vertices()

7.4.4 Build Result of Type Vertex

The input data for this step is BOPAlgo_Builder object after building images for vertices and Type, which is the
shape type (TopAbs_VERTEX).

No Contents Implementation
1 For the arguments of type Type. If

there is an image for the argument:
add the image to the result. If
there is no image for the argument:
add the argument to the result.

BOPAlgo_Builder::BuildResult()

7.4.5 Build Images for Edges

The input data for this step is BOPAlgo_Builder object after building result of type vertex.

No Contents Implementation
1 For all pave blocks in the DS. Fill

myImages for the original edge E
by split edges ESPi from pave
blocks. In case of common blocks
on edges, use edge ESPSDj that
corresponds to the leading pave
block and fill myShapesSD by the
pairs ESPi/ESPSDj.

BOPAlgo_Builder::FillImages-
Edges()

7.4.6 Build Result of Type Edge

This step is the same as Building Result of Type Vertex (p. 49), but for the type Edge.

7.4.7 Build Images for Wires

The input data for this step is:

• BOPAlgo_Builder object after building result of type Edge;

• Original Shape – Wire

• Type – the shape type (TopAbs_WIRE).

No Contents Implementation
1 For all arguments of the type Type.

Create a container C of the type
Type.

BOPAlgo_Builder::FillImages-
Containers()

2 Add to C the images or non-split
parts of the Original Shape, taking
into account its orientation.

BOPAlgo_Builder::FillImages-
Containers()
BOPTools_Tools::IsSplitTo-
Reverse()
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3 Fill myImages for the Original
Shape by the information above.

BOPAlgo_Builder::FillImages-
Containers()

7.4.8 Build Result of Type Wire

This step is the same as Building Result of Type Vertex (p. 49) but for the type Wire.

7.4.9 Build Images for Faces

The input data for this step is BOPAlgo_Builder object after building result of type Wire.

No Contents Implementation
1 Build Split Faces for all interfered

DS shapes Fi of type FACE.
1.1 Collect all edges or their images of

Fi(ESPij).
BOPAlgo_Builder::BuildSplit-
Faces()

1.2 Impart to ESPij the orientation to
be coherent with the original one.

BOPAlgo_Builder::BuildSplit-
Faces()

1.3 Collect all section edges SEk for
Fi.

BOPAlgo_Builder::BuildSplit-
Faces()

1.4 Build split faces for Fi (Fi1,
Fi2. . . FiNbSp), where NbSp is the
number of split parts (see
Building faces from a set of
edges (p. 41) for more details).

BOPAlgo_BuilderFace

1.5 Impart to (Fi1, Fi2. . . FiNbSp) the
orientation coherent with the
original face Fi.

BOPAlgo_Builder::BuildSplit-
Faces()

1.6 Fill the map mySplits with Fi/(Fi1,
Fi2. . . FiNbSp)

BOPAlgo_Builder::BuildSplit-
Faces()

2 Fill Same Domain faces BOPAlgo_Builder::FillSame-
DomainFaces

2.1 Find and collect in the contents of
mySplits the pairs of same domain
split faces (Fij, Fkl)m, where m is
the number of pairs.

BOPAlgo_Builder::FillSame-
DomainFaces
BOPTools_Tools::AreFacesSame-
Domain()

2.2 Compute the connexity chains 1)
of same domain faces (F1C,
F2C. . . FnC)k, C=0, 1. . . nCs,
where nCs is the number of
connexity chains.

BOPAlgo_Builder::FillSame-
DomainFaces()

2.3 Fill myShapesSD using the chains
(F1C, F2C. . . FnC)k

BOPAlgo_Builder::FillSame-
DomainFaces()

2.4 Add internal vertices to split faces. BOPAlgo_Builder::FillSame-
DomainFaces()

2.5 Fill myImages using myShapesSD
and mySplits.

BOPAlgo_Builder::FillSame-
DomainFaces()

The example of chains of same domain faces is given in the image:

(c) Open CASCADE 2016



7.4 Class BOPAlgo_Builder 51

F2 

Chain 1 
Chain 2 

F1 F3 

F4 

F5 

F11 
F21 F22 

F31 
F6 

F51 

F41 

Figure 38: Chains of same domain faces

• The pairs of same domain faces are: (F11, F21), (F22, F31), (F41, F51) , (F41, F6) and (F51, F6).

• The pairs produce the three chains: (F11, F21), (F22, F31) and (F41, F51, F6).

7.4.10 Build Result of Type Face

This step is the same as Building Result of Type Vertex (p. 49) but for the type Face.

7.4.11 Build Images for Shells

The input data for this step is:

• BOPAlgo_Builder object after building result of type face;

• Original Shape – a Shell;

• Type – the type of the shape (TopAbs_SHELL).

The procedure is the same as for building images for wires.

7.4.12 Build Result of Type Shell

This step is the same as Building Result of Type Vertex (p. 49) but for the type Shell.

7.4.13 Build Images for Solids

The input data for this step is BOPAlgo_Builder object after building result of type Shell.

The following procedure is executed for all interfered DS shapes Si of type SOLID.

No Contents Implementation
1 Collect all images or non-split

parts for all faces (FSPij) that have
3D state In Si.

BOPAlgo_Builder::FillIn3DParts ()
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2 Collect all images or non-split
parts for all faces of Si

BOPAlgo_Builder::BuildSplit-
Solids()

3 Build split solids for Si -> (Si1,
Si2. . . SiNbSp), where NbSp is the
number of split parts (see
Building faces from a set of
edges (p. 41) for more details)

BOPAlgo_BuilderSolid

4 Fill the map Same Domain solids
myShapesSD

BOPAlgo_Builder::BuildSplit-
Solids()

5 Fill the map myImages BOPAlgo_Builder::BuildSplit-
Solids()

6 Add internal vertices to split solids BOPAlgo_Builder::FillInternal-
Shapes()

7.4.14 Build Result of Type Solid

This step is the same as Building Result of Type Vertex (p. 49), but for the type Solid.

7.4.15 Build Images for Type CompSolid

The input data for this step is:

• BOPAlgo_Builder object after building result of type solid;

• Original Shape – a Compsolid;

• Type – the type of the shape (TopAbs_COMPSOLID).

The procedure is the same as for building images for wires.

7.4.16 Build Result of Type Compsolid

This step is the same as Building Result of Type Vertex (p. 49), but for the type Compsolid.

7.4.17 Build Images for Compounds

The input data for this step is as follows:

• BOPAlgo_Builder object after building results of type compsolid;

• Original Shape – a Compound;

• Type – the type of the shape (TopAbs_COMPOUND).

The procedure is the same as for building images for wires.

7.4.18 Build Result of Type Compound

This step is the same as Building Result of Type Vertex (p. 49), but for the type Compound.

7.4.19 Post-Processing

The purpose of the step is to correct tolerances of the result to provide its validity in terms of BRepCheck_Analyzer.

The input data for this step is a BOPAlgo_Builder object after building result of type compound.
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No Contents Implementation
1 Correct tolerances of vertices on

curves
BOPTools_Tools::CorrectPointOn-
Curve()

2 Correct tolerances of edges on
faces

BOPTools_Tools::CorrectCurve-
OnSurface()
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8 Boolean Operations Algorithm

8.1 Arguments

• The arguments of BOA are shapes in terms of TopoDS_Shape. The main requirements for the arguments
are described in the Data Structure (p. 24)

• There are two groups of arguments in BOA:

– Objects (S1=S11, S12, ...);

– Tools (S2=S21, S22, ...).

• The following table contains the values of dimension for different types of arguments:

No Type of Argument Index of Type Dimension
1 COMPOUND 0 One of 0, 1, 2, 3
2 COMPSOLID 1 3
3 SOLID 2 3
4 SHELL 3 2
5 FACE 4 2
6 WIRE 5 1
7 EDGE 6 1
8 VERTEX 7 0

• For Boolean operation Fuse all arguments should have equal dimensions.

• For Boolean operation Cut the minimal dimension of S2 should not be less than the maximal dimension of
S1.

• For Boolean operation Common the arguments can have any dimension.

8.2 Results. General Rules

• The result of the Boolean operation is a compound (if defined). Each sub-shape of the compound has shared
sub-shapes in accordance with interferences between the arguments.

• The content of the result depends on the type of the operation (Common, Fuse, Cut12, Cut21) and the
dimensions of the arguments.

• The result of the operation Fuse is defined for arguments S1 and S2 that have the same dimension value :
Dim(S1)=Dim(S2). If the arguments have different dimension values the result of the operation Fuse is not
defined. The dimension of the result is equal to the dimension of the arguments. For example, it is impossible
to fuse an edge and a face.

• The result of the operation Fuse for arguments S1 and S2 contains the parts of arguments that have states
OUT relative to the opposite arguments.

• The result of the operation Fuse for arguments S1 and S2 having dimension value 3 (Solids) is refined by
removing all possible internal faces to provide minimal number of solids.

• The result of the operation Common for arguments S1 and S2 is defined for all values of the dimensions of
the arguments. The result can contain shapes of different dimensions, but the minimal dimension of the result
will be equal to the minimal dimension of the arguments. For example, the result of the operation Common
between edges cannot be a vertex.

• The result of the operation Common for the arguments S1 and S2 contains the parts of the argument that
have states IN and ON relative to the opposite argument.
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• The result of the operation Cut is defined for arguments S1 and S2 that have values of dimensions Dim(S2)
that should not be less than Dim(S1). The result can contain shapes of different dimensions, but the minimal
dimension of the result will be equal to the minimal dimension of the objects Dim(S1). The result of the
operation Cut12 is not defined for other cases. For example, it is impossible to cut an edge from a solid,
because a solid without an edge is not defined.

• The result of the operation Cut12 for arguments S1 and S2 contains the parts of argument S1 that have state
OUT relative to the opposite argument S2.

• The result of the operation Cut21 for arguments S1 and S2 contains the parts of argument S2 that have state
OUT relative to the opposite argument S1.

• For the arguments of collection type (WIRE, SHELL, COMPSOLID) the type will be passed in the result. For
example, the result of Common operation between Shell and Wire will be a compound containing Wire.

• For the arguments of collection type (WIRE, SHELL, COMPSOLID) containing overlapping parts the over-
lapping parts passed into result will be repeated for each container from the input shapes containing such
parts.

• The result of the operation Fuse for the arguments of collection type (WIRE, SHELL, COMPSOLID) will
contain the same number of containers as the arguments. The overlapping parts (EDGES/FACES/SOLIDS)
will be shared among them. For example, the result of Fuse operation between two wires will be two wires
sharing coinciding edges if any.

• The result of the operation Common for the arguments of collection type (WIRE, SHELL, COMPSOLID) will
consist of the containers containing the same overlapping parts. For example, the result of Common operation
between two fully/partially overlapping wires will be two wires containing the same edges.

8.3 Examples

8.3.1 Case 1: Two Vertices

Let us consider two interfering vertices V1 and V2:

 
V1 V2 

• The result of Fuse operation is the compound that contains new vertex V.

 

V1 V2 

V 
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• The result of Common operation is a compound containing new vertex V.

• The result of Cut12 operation is an empty compound.

• The result of Cut21 operation is an empty compound.

8.3.2 Case 2: A Vertex and an Edge

Let us consider vertex V1 and the edge E2, that intersect in a 3D point:

• The result of Fuse operation is result is not defined because the dimension of the vertex (0) is not equal to
the dimension of the edge (1).

• The result of Common operation is a compound containing vertex V1 as the argument V1 has a common
part with edge E2.

• The result of Cut12 operation is an empty compound.

• The result of Cut21 operation is not defined because the dimension of the vertex (0) is less than the dimension
of the edge (1).

8.3.3 Case 3: A Vertex and a Face

Let us consider vertex V1 and face F2, that intersect in a 3D point:
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• The result of Fuse operation is not defined because the dimension of the vertex (0) is not equal to the
dimension of the face (2).

• The result of Common operation is a compound containing vertex V1 as the argument V1 has a common
part with face F2.

• The result of Cut12 operation is an empty compound.

• The result of Cut21 operation is not defined because the dimension of the vertex (0) is less than the dimension
of the face (2).

8.3.4 Case 4: A Vertex and a Solid

Let us consider vertex V1 and solid S2, that intersect in a 3D point:

• The result of Fuse operation is not defined because the dimension of the vertex (0) is not equal to the
dimension of the solid (3).

• The result of Common operation is a compound containing vertex V1 as the argument V1 has a common
part with solid S2.
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• The result of Cut12 operation is an empty compound.

• The result of Cut21 operation is not defined because the dimension of the vertex (0) is less than the dimension
of the solid (3).

8.3.5 Case 5: Two edges intersecting at one point

Let us consider edges E1 and E2 that intersect in a 3D point:

E2 

E1 

• The result of Fuse operation is a compound containing split parts of arguments i.e. 4 new edges E11, E12,
E21, and E22. These edges have one shared vertex Vn1. In this case:

– argument edge E1 has resulting split edges E11 and E12 (image of E1);

– argument edge E2 has resulting split edges E21 and E22 (image of E2).

Vn1 

E21 

E11 E12 

E22 

• The result of Common operation is an empty compound because the dimension (0) of the common part
between the edges (vertex) is less than the dimension of the arguments (1).
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• The result of Cut12 operation is a compound containing split parts of the argument E1, i.e. 2 new edges E11
and E12. These edges have one shared vertex Vn1.

In this case the argument edge E1 has resulting split edges E11 and E12 (image of E1).

Vn1 

E11 E12 

• The result of Cut21 operation is a compound containing split parts of the argument E2, i.e. 2 new edges E21
and E12. These edges have one shared vertex Vn1.

In this case the argument edge E2 has resulting split edges E21 and E22 (image of E2).

Vn1 

E21 

E22 

8.3.6 Case 6: Two edges having a common block

Let us consider edges E1 and E2 that have a common block:

E2 

E1 

• The result of Fuse operation is a compound containing split parts of arguments i.e. 3 new edges E11, E12
and E22. These edges have two shared vertices. In this case:

– argument edge E1 has resulting split edges E11 and E12 (image of E1);

– argument edge E2 has resulting split edges E21 and E22 (image of E2);

– edge E12 is common for the images of E1 and E2.
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E12 

E22 

E11 

• The result of Common operation is a compound containing split parts of arguments i.e. 1 new edge E12. In
this case edge E12 is common for the images of E1 and E2. The common part between the edges (edge)
has the same dimension (1) as the dimension of the arguments (1).

E12 

• The result of Cut12 operation is a compound containing a split part of argument E1, i.e. new edge E11.

E11 

• The result of Cut21 operation is a compound containing a split part of argument E2, i.e. new edge E22.

 

E22

 

8.3.7 Case 7: An Edge and a Face intersecting at a point

Let us consider edge E1 and face F2 that intersect at a 3D point:
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• The result of Fuse operation is not defined because the dimension of the edge (1) is not equal to the dimension
of the face (2).

• The result of Common operation is an empty compound because the dimension (0) of the common part
between the edge and face (vertex) is less than the dimension of the arguments (1).

• The result of Cut12 operation is a compound containing split parts of the argument E1, i.e. 2 new edges E11
and E12.

In this case the argument edge E1 has no common parts with the face F2 so the whole image of E1 is in the result.

• The result of Cut21 operation is not defined because the dimension of the edge (1) is less than the dimension
of the face (2).

8.3.8 Case 8: A Face and an Edge that have a common block

Let us consider edge E1 and face F2 that have a common block:
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• The result of Fuse operation is not defined because the dimension of the edge (1) is not equal to the dimension
of the face (2).

• The result of Common operation is a compound containing a split part of the argument E1, i.e. new edge
E12.

In this case the argument edge E1 has a common part with face F2 so the corresponding part of the image of E1 is
in the result. The yellow square is not a part of the result. It only shows the place of F2.

• The result of Cut12 operation is a compound containing split part of the argument E1, i.e. new edge E11.

In this case the argument edge E1 has a common part with face F2 so the corresponding part is not included into
the result. The yellow square is not a part of the result. It only shows the place of F2.
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• The result of Cut21 operation is not defined because the dimension of the edge (1) is less than the dimension
of the face (2).

8.3.9 Case 9: An Edge and a Solid intersecting at a point

Let us consider edge E1 and solid S2 that intersect at a point:

• The result of Fuse operation is not defined because the dimension of the edge (1) is not equal to the dimension
of the solid (3).

• The result of Common operation is a compound containing a split part of the argument E1, i.e. new edge
E12.

In this case the argument edge E1 has a common part with solid S2 so the corresponding part of the image of E1
is in the result. The yellow square is not a part of the result. It only shows the place of S2.
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• The result of Cut12 operation is a compound containing split part of the argument E1, i.e. new edge E11.

In this case the argument edge E1 has a common part with solid S2 so the corresponding part is not included into
the result. The yellow square is not a part of the result. It only shows the place of S2.

• The result of Cut21 operation is not defined because the dimension of the edge (1) is less than the dimension
of the solid (3).

8.3.10 Case 10: An Edge and a Solid that have a common block

Let us consider edge E1 and solid S2 that have a common block:
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• The result of Fuse operation is not defined because the dimension of the edge (1) is not equal to the dimension
of the solid (3).

• The result of Common operation is a compound containing a split part of the argument E1, i.e. new edge
E12.

In this case the argument edge E1 has a common part with solid S2 so the corresponding part of the image of E1
is in the result. The yellow square is not a part of the result. It only shows the place of S2.

• The result of Cut12 operation is a compound containing split part of the argument E1, i.e. new edge E11.

In this case the argument edge E1 has a common part with solid S2 so the corresponding part is not included into
the result. The yellow square is not a part of the result. It only shows the place of S2.

(c) Open CASCADE 2016



8.3 Examples 66

• The result of Cut21 operation is not defined because the dimension of the edge (1) is less than the dimension
of the solid (3).

8.3.11 Case 11: Two intersecting faces

Let us consider two intersecting faces F1 and F2:

• The result of Fuse operation is a compound containing split parts of arguments i.e. 2 new faces F11 and F21.
These faces have one shared edge En1.
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• The result of Common operation is an empty compound because the dimension (1) of the common part
between F1 and F2 (edge) is less than the dimension of arguments (2).

• The result of Cut12 operation is a compound containing split part of the argument F1, i.e. new face F11.

• The result of Cut21 operation is a compound containing split parts of the argument F2, i.e. 1 new face F21.

8.3.12 Case 12: Two faces that have a common part

Let us consider two faces F1 and F2 that have a common part:
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• The result of Fuse operation is a compound containing split parts of arguments, i.e. 3 new faces: F11, F12
and F22. These faces are shared through edges In this case:

– the argument edge F1 has resulting split faces F11 and F12 (image of F1)

– the argument face F2 has resulting split faces F12 and F22 (image of F2)

– the face F12 is common for the images of F1 and F2.

• The result of Common operation is a compound containing split parts of arguments i.e. 1 new face F12. In
this case: face F12 is common for the images of F1 and F2. The common part between the faces (face) has
the same dimension (2) as the dimension of the arguments (2).

• The result of Cut12 operation is a compound containing split part of the argument F1, i.e. new face F11.
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• The result of Cut21 operation is a compound containing split parts of the argument F2, i.e. 1 new face F21.

8.3.13 Case 13: Two faces that have a common edge

Let us consider two faces F1 and F2 that have a common edge:

• The result of Fuse operation is a compound containing split parts of arguments, i.e. 2 new faces: F11 and
F21. These faces have one shared edge En1.
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• The result of Common operation is an empty compound because the dimension (1) of the common part
between F1 and F2 (edge)is less than the dimension of the arguments (2)

• The result of Cut12 operation is a compound containing split part of the argument F1, i.e. new face F11. The
vertices are shown just to clarify the fact that the edges are spitted.

• The result of Cut21 operation is a compound containing split parts of the argument F2, i.e. 1 new face F21.
The vertices are shown just to clarify the fact that the edges are spitted.

8.3.14 Case 14: Two faces that have a common vertex

Let us consider two faces F1 and F2 that have a common vertex:
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• The result of Fuse operation is a compound containing split parts of arguments, i.e. 2 new faces: F11 and
F21. These faces have one shared vertex Vn1.

• The result of Common operation is an empty compound because the dimension (0) of the common part
between F1 and F2 (vertex) is less than the dimension of the arguments (2)

• The result of Cut12 operation is a compound containing split part of the argument F1, i.e. new face F11.

• The result of Cut21 operation is a compound containing split parts of the argument F2, i.e. 1 new face F21.
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8.3.15 Case 15: A Face and a Solid that have an intersection curve.

Let us consider face F1 and solid S2 that have an intersection curve:

• The result of Fuse operation is not defined because the dimension of the face (2) is not equal to the dimension
of the solid (3).

• The result of Common operation is a compound containing split part of the argument F1. In this case the
argument face F1 has a common part with solid S2, so the corresponding part of the image of F1 is in the
result. The yellow contour is not a part of the result. It only shows the place of S2.

• The result of Cut12 operation is a compound containing split part of the argument F1. In this case argument
face F1 has a common part with solid S2 so the corresponding part is not included into the result. The yellow
contour is not a part of the result. It only shows the place of S2.
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• The result of Cut21 operation is is not defined because the dimension of the face (2) is less than the dimension
of the solid (3).

8.3.16 Case 16: A Face and a Solid that have overlapping faces.

Let us consider face F1 and solid S2 that have overlapping faces:

• The result of Fuse operation is not defined because the dimension of the face (2) is not equal to the dimension
of the solid (3).

• The result of Common operation is a compound containing split part of the argument F1. In this case the
argument face F1 has a common part with solid S2, so the corresponding part of the image of F1 is included
in the result. The yellow contour is not a part of the result. It only shows the place of S2.
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• The result of Cut12 operation is a compound containing split part of the argument F1. In this case argument
face F1 has a common part with solid S2 so the corresponding part is not included into the result. The yellow
contour is not a part of the result. It only shows the place of S2.

• The result of Cut21 operation is is not defined because the dimension of the face (2) is less than the dimension
of the solid (3).

8.3.17 Case 17: A Face and a Solid that have overlapping edges.

Let us consider face F1 and solid S2 that have overlapping edges:
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• The result of Fuse operation is not defined because the dimension of the face (2) is not equal to the dimension
of the solid (3).

• The result of Common operation is an empty compound because the dimension (1) of the common part
between F1 and S2 (edge) is less than the lower dimension of the arguments (2).

• The result of Cut12 operation is a compound containing split part of the argument F1. In this case argument
face F1 has a common part with solid S2 so the corresponding part is not included into the result. The yellow
contour is not a part of the result. It only shows the place of S2.

• The result of Cut21 operation is is not defined because the dimension of the face (2) is less than the dimension
of the solid (3).

8.3.18 Case 18: A Face and a Solid that have overlapping vertices.

Let us consider face F1 and solid S2 that have overlapping vertices:
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• The result of Fuse operation is not defined because the dimension of the face (2) is not equal to the dimension
of the solid (3).

• The result of Common operation is an empty compound because the dimension (1) of the common part
between F1 and S2 (vertex) is less than the lower dimension of the arguments (2).

• The result of Cut12 operation is a compound containing split part of the argument F1. In this case argument
face F1 has a common part with solid S2 so the corresponding part is not included into the result. The yellow
contour is not a part of the result. It only shows the place of S2.

• The result of Cut21 operation is is not defined because the dimension of the face (2) is less than the dimension
of the solid (3).

8.3.19 Case 19: Two intersecting Solids.

Let us consider two intersecting solids S1 and S2:
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• The result of Fuse operation is a compound composed from the split parts of arguments S11, S12 and S22
(Cut12, Common, Cut21). All inner webs are removed, so the result is one new solid R.

• The result of Common operation is a compound containing split parts of arguments i.e. one new solid S12.
In this case solid S12 is common for the images of S1 and S2. The common part between the solids (solid)
has the same dimension (3) as the dimension of the arguments (3). The yellow contour is not a part of the
result. It only shows the place of S1.

• The result of Cut12 operation is a compound containing split part of the argument S1, i.e. 1 new solid S11.
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• The result of Cut21 operation is a compound containing split part of the argument S2, i.e. 1 new solid S21.

8.3.20 Case 20: Two Solids that have overlapping faces.

Let us consider two solids S1 and S2 that have a common part on face:

• The result of Fuse operation is a compound composed from the split parts of arguments S11, S12 and S22
(Cut12, Common, Cut21). All inner webs are removed, so the result is one new solid R.
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• The result of Common operation is an empty compound because the dimension (2) of the common part
between S1 and S2 (face) is less than the lower dimension of the arguments (3).

• The result of Cut12 operation is a compound containing split part of the argument S1, i.e. 1 new solid S11.

• The result of Cut21 operation is a compound containing split part of the argument S2, i.e. 1 new solid S21.
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8.3.21 Case 21: Two Solids that have overlapping edges.

Let us consider two solids S1 and S2 that have overlapping edges:

• The result of Fuse operation is a compound composed from the split parts of arguments i.e. 2 new solids S11
and S21. These solids have one shared edge En1.

• The result of Common operation is an empty compound because the dimension (1) of the common part
between S1 and S2 (edge) is less than the lower dimension of the arguments (3).

• The result of Cut12 operation is a compound containing split part of the argument S1. In this case argument
S1 has a common part with solid S2 so the corresponding part is not included into the result.

(c) Open CASCADE 2016



8.3 Examples 81

• The result of Cut21 operation is a compound containing split part of the argument S2. In this case argument
S2 has a common part with solid S1 so the corresponding part is not included into the result.

8.3.22 Case 22: Two Solids that have overlapping vertices.

Let us consider two solids S1 and S2 that have overlapping vertices:

(c) Open CASCADE 2016



8.3 Examples 82

• The result of Fuse operation is a compound composed from the split parts of arguments i.e. 2 new solids S11
and S21. These solids share Vn1.

• The result of Common operation is an empty compound because the dimension (0) of the common part
between S1 and S2 (vertex) is less than the lower dimension of the arguments (3).

• The result of Cut12 operation is a compound containing split part of the argument S1.

• The result of Cut21 operation is a compound containing split part of the argument S2.
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8.3.23 Case 23: A Shell and a Wire cut by a Solid.

Let us consider Shell Sh and Wire W as the objects and Solid S as the tool:

• The result of Fuse operation is not defined as the dimension of the arguments is not the same.

• The result of Common operation is a compound containing the parts of the initial Shell and Wire common for
the Solid. The new Shell and Wire are created from the objects.

• The result of Cut12 operation is a compound containing new Shell and Wire split from the arguments Sh and
W. In this case they have a common part with solid S so the corresponding part is not included into the result.
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• The result of Cut21 operation is not defined as the objects have a lower dimension than the tool.

8.3.24 Case 24: Two Wires that have overlapping edges.

Let us consider two Wires that have overlapping edges, W1 is the object and W2 is the tool:

• The result of Fuse operation is a compound containing two Wires, which share an overlapping edge. The
new Wires are created from the objects:
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• The result of Common operation is a compound containing two Wires both consisting of an overlapping edge.
The new Wires are created from the objects:

• The result of Cut12 operation is a compound containing a wire split from object W1. Its common part with W2
is not included into the result.
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• The result of Cut21 operation is a compound containing a wire split from W2. Its common part with W1 is not
included into the result.

8.4 Class BOPAlgo_BOP

BOA is implemented in the class BOPAlgo_BOP. The main fields of this class are described in the Table:

Name Contents
myOperation The type of the Boolean operation (Common, Fuse,

Cut)
myTools The tools
myDims[2] The values of the dimensions of the arguments
myRC The draft result (shape)

The main steps of the BOPAlgo_BOP are the same as of BOPAlgo_Builder (p. 48) except for some aspects
described in the next paragraphs.

8.5 Building Draft Result

The input data for this step is as follows:
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• BOPAlgo_BOP object after building result of type Compound;

• Type of the Boolean operation.

No Contents Implementation
1 For the Boolean operation Fuse

add to myRC all images of
arguments.

BOPAlgo_BOP::BuildRC()

2 For the Boolean operation
Common or Cut add to myRC all
images of argument S1 that are
Common for the Common
operation and are Not Common for
the Cut operation

BOPAlgo_BOP::BuildRC()

8.6 Building the Result

The input data for this step is as follows:

• BOPAlgo_BOP object the state after building draft result.

No Contents Implementation
1 For the Type of the Boolean

operation Common, Cut with any
dimension and operation Fuse with
myDim[0] < 3

1.1 Find containers (WIRE, SHELL,
COMPSOLID) in the arguments

BOPAlgo_BOP:: BuildShape()

1.2 Make connexity blocks from splits
of each container that are in myRC

BOPTools_Tools::MakeConnexity-
Blocks()

1.3 Build the result from shapes made
from the connexity blocks

BOPAlgo_BOP:: BuildShape()

1.4 Add the remaining shapes from
myRC to the result

BOPAlgo_BOP:: BuildShape()

2 For the Type of the Boolean
operation Fuse with myDim[0] = 3

2.1 Find internal faces (FWi) in myRC BOPAlgo_BOP::BuildSolid()
2.2 Collect all faces of myRC except

for internal faces (FWi) -> SFS
BOPAlgo_BOP::BuildSolid ()

2.3 Build solids (SDi) from SFS. BOPAlgo_BuilderSolid
2.4 Add the solids (SDi) to the result
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9 Section Algorithm

9.1 Arguments

The arguments of BOA are shapes in terms of TopoDS_Shape. The main requirements for the arguments are
described in the Algorithms.

9.2 Results and general rules

• The result of Section operation is a compound. Each sub-shape of the compound has shared sub-shapes in
accordance with interferences between the arguments.

• The result of Section operation contains shapes that have dimension that is less then 2 i.e. vertices and
edges.

• The result of Section operation contains standalone vertices if these vertices do not belong to the edges of
the result.

• The result of Section operation contains vertices and edges of the arguments (or images of the arguments)
that belong to at least two arguments (or two images of the arguments).

• The result of Section operation contains Section vertices and edges obtained from Face/Face interferences.

• The result of Section operation contains vertices that are the result of interferences between vertices and
faces.

• The result of Section operation contains edges that are the result of interferences between edges and faces
(Common Blocks),

9.3 Examples

9.3.1 Case 1: Two Vertices

Let us consider two interfering vertices: V1 and V2.

The result of Section operation is the compound that contains a new vertex V.
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9.3.2 Case 1: Case 2: A Vertex and an Edge

Let us consider vertex V1 and the edge E2, that intersect in a 3D point:

The result of Section operation is the compound that contains vertex V1.

9.3.3 Case 1: Case 2: A Vertex and a Face

Let us consider vertex V1 and face F2, that intersect in a 3D point:

The result of Section operation is the compound that contains vertex V1.

9.3.4 Case 4: A Vertex and a Solid

Let us consider vertex V1 and solid Z2. The vertex V1 is inside the solid Z2.
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The result of Section operation is an empty compound.

9.3.5 Case 5: Two edges intersecting at one point

Let us consider edges E1 and E2, that intersect in a 3D point:

The result of Section operation is the compound that contains a new vertex Vnew.

9.3.6 Case 6: Two edges having a common block

Let us consider edges E1 and E2, that have a common block:

The result of Section operation is the compound that contains a new edge Enew.
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9.3.7 Case 7: An Edge and a Face intersecting at a point

Let us consider edge E1 and face F2, that intersect at a 3D point:

The result of Section operation is the compound that contains a new vertex Vnew.

9.3.8 Case 8: A Face and an Edge that have a common block

Let us consider edge E1 and face F2, that have a common block:

The result of Section operation is the compound that contains new edge Enew.
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9.3.9 Case 9: An Edge and a Solid intersecting at a point

Let us consider edge E1 and solid Z2, that intersect at a point:

The result of Section operation is the compound that contains a new vertex Vnew.

9.3.10 Case 10: An Edge and a Solid that have a common block

Let us consider edge E1 and solid Z2, that have a common block at a face:

The result of Section operation is the compound that contains a new edge Enew.
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9.3.11 Case 11: Two intersecting faces

Let us consider two intersecting faces F1 and F2:

The result of Section operation is the compound that contains a new edge Enew.

9.3.12 Case 12: Two faces that have a common part

Let us consider two faces F1 and F2 that have a common part:

The result of Section operation is the compound that contains 4 new edges.
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9.3.13 Case 13: Two faces that have overlapping edges

Let us consider two faces F1 and F2 that have a overlapping edges:

The result of Section operation is the compound that contains a new edge Enew.

9.3.14 Case 14: Two faces that have overlapping vertices

Let us consider two faces F1 and F2 that have overlapping vertices:

The result of Section operation is the compound that contains a new vertex Vnew.
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9.3.15 Case 15: A Face and a Solid that have an intersection curve

Let us consider face F1 and solid Z2 that have an intersection curve:

The result of Section operation is the compound that contains new edges.

9.3.16 Case 16: A Face and a Solid that have overlapping faces.

Let us consider face F1 and solid Z2 that have overlapping faces:

The result of Section operation is the compound that contains new edges
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9.3.17 Case 17: A Face and a Solid that have overlapping edges.

Let us consider face F1 and solid Z2 that have a common part on edge:

The result of Section operation is the compound that contains a new edge Enew.

9.3.18 Case 18: A Face and a Solid that have overlapping vertices.

Let us consider face F1 and solid Z2 that have overlapping vertices:

The result of Section operation is the compound that contains a new vertex Vnew.
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9.3.19 Case 19: Two intersecting Solids

Let us consider two intersecting solids Z1 and Z2:

The result of Section operation is the compound that contains new edges.

9.3.20 Case 20: Two Solids that have overlapping faces

Let us consider two solids Z1 and Z2 that have a common part on face:

The result of Section operation is the compound that contains new edges.
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9.3.21 Case 21: Two Solids that have overlapping edges

Let us consider two solids Z1 and Z2 that have overlapping edges:

The result of Section operation is the compound that contains a new edge Enew.

9.3.22 Case 22: Two Solids that have overlapping vertices

Let us consider two solids Z1 and Z2 that have overlapping vertices:

The result of Section operation is the compound that contains a new vertex Vnew.
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9.4 Class BOPAlgo_Section

SA is implemented in the class BOPAlgo_Section. The class has no specific fields. The main steps of the BOP-
Algo_Section are the same as of BOPAlgo_Builder except for the following steps:

• Build Images for Wires;

• Build Result of Type Wire;

• Build Images for Faces;

• Build Result of Type Face;

• Build Images for Shells;

• Build Result of Type Shell;

• Build Images for Solids;

• Build Result of Type Solid;

• Build Images for Type CompSolid;

• Build Result of Type CompSolid;

• Build Images for Compounds; Some aspects of building the result are described in the next paragraph

9.5 Building the Result

No Contents Implementation
1 Build the result of the operation

using all information contained in
FaceInfo, Common Block, Shared
entities of the arguments, etc.

BOPAlgo_Section:: BuildSection()
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10 Algorithm Limitations

The chapter describes the problems that are considered as Algorithm limitations. In most cases an Algorithm failure
is caused by a combination of various factors, such as self-interfered arguments, inappropriate or ungrounded
values of the argument tolerances, adverse mutual position of the arguments, tangency, etc.

A lot of failures of GFA algorithm can be caused by bugs in low-level algorithms: Intersection Algorithm, Projection
Algorithm, Approximation Algorithm, Classification Algorithm, etc.

• The Intersection, Projection and Approximation Algorithms are mostly used at the Intersection step. Their
bugs directly cause wrong section results (i.e. incorrect section edges, section points, missing section edges
or micro edges). It is not possible to obtain a correct final result of the GFA if a section result is wrong.

• The Projection Algorithm is used at the Intersection step. The purpose of Projection Algorithm is to compute
2D curves on surfaces. Wrong results here lead to incorrect or missing faces in the final GFA result.

• The Classification Algorithm is used at the Building step. The bugs in the Classification Algorithm lead to
errors in selecting shape parts (edges, faces, solids) and ultimately to a wrong final GFA result.

The description below illustrates some known GFA limitations. It does not enumerate exhaustively all problems that
can arise in practice. Please, address cases of Algorithm failure to the OCCT Maintenance Service.

10.1 Arguments

10.1.1 Common requirements

Each argument should be valid (in terms of BRepCheck_Analyzer), or conversely, if the argument is considered as
non-valid (in terms of BRepCheck_Analyzer), it cannot be used as an argument of the algorithm.

The class BRepCheck_Analyzer is used to check the overall validity of a shape. In OCCT a Shape (or its sub-
shapes) is considered valid if it meets certain criteria. If the shape is found as invalid, it can be fixed by tools from
ShapeAnalysis, ShapeUpgrade and ShapeFix packages.

However, it is important to note that class BRepCheck_Analyzer is just a tool that can have its own problems; this
means that due to a specific factor(s) this tool can sometimes provide a wrong result.

Let us consider the following example:

The Analyzer checks distances between couples of 3D check-points (Pi, PSi) of edge E on face F. Point Pi is
obtained from the 3D curve (at the parameter ti) of the edge. PSi is obtained from 2D curve (at the parameter ti) of
the edge on surface S of face F. To be valid the distance should be less than Tol(E) for all couples of check-points.
The number of these check-points is a predefined value (e.g. 23).

Let us consider the case when edge E is recognized valid (in terms of BRepCheck_Analyzer).

Further, after some operation, edge E is split into two edges E1 and E2. Each split edge has the same 3D curve
and 2D curve as the original edge E.

Let us check E1 (or E2). The Analyzer again checks the distances between the couples of check-points points
(Pi, PSi). The number of these check-points is the same constant value (23), but there is no guarantee that the
distances will be less than Tol(E), because the points chosen for E1 are not the same as for E.

Thus, if E1 is recognized by the Analyzer as non-valid, edge E should also be non-valid. However E has been
recognized as valid. Thus the Analyzer gives a wrong result for E.

The fact that the argument is a valid shape (in terms of BRepCheck_Analyzer) is a necessary but insufficient
requirement to produce a valid result of the Algorithms.

10.1.2 Pure self-interference

The argument should not be self-interfered, i.e. all sub-shapes of the argument that have geometrical coincidence
through any topological entities (vertices, edges, faces) should share these entities.
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Example 1: Compound of two edges

The compound of two edges E1 and E2 is a self-interfered shape and cannot be used as the argument of the
Algorithms.

E1 

E2 

Figure 39: Compound of two edges

Example 2: Self-interfered Edge

The edge E is a self-interfered shape and cannot be used as an argument of the Algorithms.

E

Figure 40: Self-interfered Edge

Example 3: Self-interfered Face

The face F is a self-interfered shape and cannot be used as an argument of the Algorithms.
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F 

Figure 41: Self-interfered Face

Example 4: Face of Revolution

The face F has been obtained by revolution of edge E around line L.

Figure 42: Face of Revolution: Arguments

Figure 43: Face of Revolution: Result

In spite of the fact that face F is valid (in terms of BRepCheck_Analyzer) it is a self-interfered shape and cannot be
used as the argument of the Algorithms.
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10.1.3 Self-interferences due to tolerances

Example 1: Non-closed Edge

Let us consider edge E based on a non-closed circle.

Figure 44: Edge based on a non-closed circle

The distance between the vertices of E is D=0.69799. The values of the tolerances Tol(V1)=Tol(V2)=0.5.

Figure 45: Distance and Tolerances

In spite of the fact that the edge E is valid in terms of BRepCheck_Analyzer, it is a self-interfered shape because its
vertices are interfered. Thus, edge E cannot be used as an argument of the Algorithms.

Example 2: Solid containing an interfered vertex

Let us consider solid S containing vertex V.
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Figure 46: Solid containing an interfered vertex

The value of tolerance Tol(V)= 50.000075982061.

Figure 47: Tolerance

In spite of the fact that solid S is valid in terms of BRepCheck_Analyzer it is a self-interfered shape because vertex
V is interfered with a lot of sub-shapes from S without any topological connection with them. Thus solid S cannot
be used as an argument of the Algorithms.

10.1.4 Parametric representation

The parameterization of some surfaces (cylinder, cone, surface of revolution) can be the cause of limitation.

Example 1: Cylindrical surface

The parameterization range for cylindrical surface is:
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The range of U coordinate is always restricted while the range of V coordinate is non-restricted.

Let us consider a cylinder-based Face 1 with radii R=3 and H=6.

Figure 48: Face 1

Figure 49: P-Curves for Face 1

Let us also consider a cylinder-based Face 2 with radii R=3000 and H=6000 (resulting from scaling Face 1 with
scale factor ScF=1000).
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Figure 50: Face 2

Figure 51: P-Curves for Face 2

Please, pay attention to the Zoom value of the Figures.

It is obvious that starting with some value of ScF, e.g. ScF>1000000, all sloped p-Curves on Face 2 will be almost
vertical. At least, there will be no difference between the values of angles computed by standard C Run-Time Library
functions, such as double acos(double x). The loss of accuracy in computation of angles can cause failure of some
BP sub-algorithms, such as building faces from a set of edges or building solids from a set of faces.

10.1.5 Using tolerances of vertices to fix gaps

It is possible to create shapes that use sub-shapes of lower order to avoid gaps in the tolerance-based data model.

Let us consider the following example:
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Figure 52: Example

• Face F has two edges E1 and E2 and two vertices, the base plane is {0,0,0, 0,0,1};

• Edge E1 is based on line {0,0,0, 1,0,0}, Tol(E1) = 1.e-7;

• Edge E2 is based on line {0,1,0, 1,0,0}, Tol(E2) = 1.e-7;

• Vertex V1, point {0,0.5,0}, Tol(V1) = 1;

• Vertex V2, point {10,0.5,0}, Tol(V2) = 1;

• Face F is valid (in terms of BRepCheck_Analyzer).

The values of tolerances Tol(V1) and Tol(V2) are big enough to fix the gaps between the ends of the edges, but the
vertices V1 and V2 do not contain any information about the trajectories connecting the corresponding ends of the
edges. Thus, the trajectories are undefined. This will cause failure of some sub-algorithms of BP. For example, the
sub-algorithms for building faces from a set of edges use the information about all edges connected in a vertex. The
situation when a vertex has several pairs of edges such as above will not be solved in a right way.

10.2 Intersection problems

10.2.1 Pure intersections and common zones

Example: Intersecting Edges

Let us consider the intersection between two edges:

• E1 is based on a line: {0,-10,0, 1,0,0}, Tol(E1)=2.

• E2 is based on a circle: {0,0,0, 0,0,1}, R=10, Tol(E2)=2.
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Figure 53: Intersecting Edges

The result of pure intersection between E1 and E2 is vertex Vx {0,-10,0}.

The result of intersection taking into account tolerances is the common zone CZ (part of 3D-space where the
distance between the curves is less than or equals to the sum of edge tolerances.

The Intersection Part of Algorithms uses the result of pure intersection Vx instead of CZ for the following reasons:

• The Algorithms do not produce Common Blocks between edges based on underlying curves of explicitly
different type (e.g. Line / Circle). If the curves have different types, the rule of thumb is that the produced result
is of type vertex. This rule does not work for non-analytic curves (Bezier, B-Spline) and their combinations
with analytic curves.

• The algorithm of intersection between two surfaces IntPatch_Intersection does not compute CZ of the inter-
section between curves and points. So even if CZ were computed by Edge/Edge intersection algorithm, its
result could not be treated by Face/Face intersection algorithm.

10.2.2 Tolerances and inaccuracies

The following limitations result from modeling errors or inaccuracies.

Example: Intersection of planar faces

Let us consider two planar rectangular faces F1 and F2.

The intersection curve between the planes is curve C12. The curve produces a new intersection edge EC12. The
edge goes through vertices V1 and V2 thanks to big tolerance values of vertices Tol(V1) and Tol(V2). So, two
straight edges E12 and EC12 go through two vertices, which is impossible in this case.
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V3 

Tol(V1) 

V2 

E12 

E23 E41 F1 

C12 

E34 
V4 

F2EC12 

V1 

Tol(V2) 

Figure 54: Intersecting Faces

The problem cannot be solved in general, because the length of E12 can be infinite and the values of Tol(V1) and
Tol(V2) theoretically can be infinite too.

In a particular case the problem can be solved in several ways:

• Reduce, if possible, the values of Tol(V1) and Tol(V2) (refinement of F1).

• Analyze the value of Tol(EC12) and increase Tol(EC12) to get a common part between the edges EC12 and
E12. Then the common part will be rejected as there is an already existing edge E12 for face F1.

It is easy to see that if C12 is slightly above the tolerance spheres of V1 and V2 the problem does not appear.

Example: Intersection of two edges

Let us consider two edges E1 and E2, which have common vertices V1 and V2. The edges E1 and E2 have
3D-curves C1 and C2. Tol(E1)=1.e-7 , Tol(E2)=1.e-7 .

C1 practically coincides in 3D with C2. The value of deflection is Dmax (e.g. Dmax=1.e-6 ).

E1 

E2 

Dmax 

V1 V2 

C1 

C2 

Figure 55: Intersecting Edges

The evident and prospective result should be the Common Block between E1 and E2. However, the result of
intersection differs.
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E1 

E2 

2*Tol(E1) 2*Tol(E2) 

VX1 VX2 VX3 

V1 V2

Figure 56: Result of Intersection

The result contains three new vertices Vx1, Vx2 and Vx3, 8 new edges (V1, Vx1, Vx2, Vx3, V2) and no Common
Blocks. This is correct due to the source data: Tol(E1)=1.e-7 , Tol(E2)=1.e-7 and Dmax=1.e-6 .

In this particular case the problem can be solved by several ways:

• Increase, if possible, the values Tol(E1) and Tol(E2) to get coincidence in 3D between E1 and E2 in terms of
tolerance.

• Replace E1 by a more accurate model.

The example can be extended from 1D (edges) to 2D (faces).

F1 

F2 

Dmax 

 

Ex1 Ex2 Ex3 E1 E2 

Figure 57: Intersecting Faces

The comments and recommendations are the same as for 1D case above.

10.2.3 Acquired Self-interferences

Example 1: Vertex and edge

Let us consider vertex V1 and edge E2.
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V21 V22 

E2 

V1 

Tol(V1) 

Tol(V21) Tol(V22) 

Figure 58: Vertex and Edge

Vertex V1 interferes with vertices V12 and V22. So vertex V21 should interfere with vertex V22, which is impossible
because vertices V21 and V22 are the vertices of edge E2, thus V21 is not equal to V22.

The problem cannot be solved in general, because the length can be as small as possible to provide validity of E2
(in the extreme case: Length (E2) = Tol(V21) + Tol(V22) + e, where e-> 0).

In a particular case the problem can be solved by refinement of arguments, i.e. by decreasing the values of Tol(V21),
Tol(V22) and Tol(V1).

Example 2: Vertex and wire

Let us consider vertex V2 and wire consisting of edges E11 and E12.

 

Tol(V2) 

E11 E12 

Tol(E11) 
Tol(E12) 

Figure 59: Vertex and Wire
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The arguments themselves are not self-intersected. Vertex V2 interferes with edges E11 and E12. Thus, edge E11
should interfere with edge E22, but it is impossible because edges E11 and E12 cannot interfere by the condition.

The cases when a non-self-interfered argument (or its sub-shapes) become interfered due to the intersections with
other arguments (or their sub-shapes) are considered as limitations for the Algorithms.
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11 Advanced Options

The previous chapters describe so called Basic Operations. Most of tasks can be solved using Basic Operations.
Nonetheless, there are cases that can not be solved straightforwardly by Basic Operations. The tasks are consid-
ered as limitations of Basic Operations.

The chapter is devoted to Advanced Options. In some cases the usage of Advanced Options allows overcom-
ing the limitations, improving the quality of the result of operations, robustness and performance of the operators
themselves.

11.1 Fuzzy Boolean Operation

Fuzzy Boolean operation is the option of Basic Operations (GFA, BOA, PA and SA), in which additional user-
specified tolerance is used. This option allows operators to handle robustly cases of touching and near-coincident,
misalignment entities of the arguments.

The Fuzzy option is useful on the shapes with gaps or embeddings between the entities of these shapes which
are not covered by the tolerance values of these entities. Such shapes can be the result of modeling mistakes, or
translating process, or import from other systems with loss of precision, or errors in some algorithms.

Most likely, the Basic Operations will give unsatisfactory results on such models. The result may contain unexpected
and unwanted small entities, faulty entities (in terms of BRepCheck_Analyzer), or there can be no result at all.

With the Fuzzy option it is possible to get the expected result – it is just necessary to define the appropriate value of
fuzzy tolerance for the operation. To define that value it is necessary to measure the value of the gap (or the value
of embedding depth) between the entities of the models, slightly increase it (to make the shifted entities coincident
in terms of their tolerance plus the additional one) and pass it to the algorithm.

Fuzzy option is included in interface of Intersection Part (class BOPAlgo_PaveFiller) and application programming
interface (class BRepAlgoAPI_BooleanOperation)

11.2 Examples

The following examples demonstrate the advantages of usage Fuzzy option operations over the Basic Operations
in typical situations.

11.2.1 Case 1

In this example the cylinder (shown in yellow and transparent) is subtracted from the box (shown in red). The
cylinder is shifted by 5e-5 relatively to the box along its axis (the distance between rear faces of the box and cylinder
is 5e-5 ).
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The following results are obtained using Basic Operations and the Fuzzy ones with the fuzzy value 5e-5 :
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Figure 60: Result of CUT operation obtained with Basic Operations

Figure 61: Result of CUT operation obtained with Fuzzy Option

In this example Fuzzy option allows eliminating a very thin part of the result shape produced by Basic algorithm due
to misalignment of rear faces of the box and the cylinder.
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11.2.2 Case 2

In this example two boxes are fused. One of them has dimensions 10∗10∗10, and the other is 10∗10.000001∗10.000001
and adjacent to the first one. There is no gap in this case as the surfaces of the neighboring faces coincide, but one
box is slightly greater than the other.

The following results are obtained using Basic Operations and the Fuzzy ones with the fuzzy value 1e-6 :
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Figure 62: Result of CUT operation obtained with Basic Operations

Figure 63: Result of CUT operation obtained with Fuzzy Option

In this example Fuzzy option allows eliminating an extremely narrow face in the result produced by Basic operation.

11.2.3 Case 3

In this example the small planar face (shown in orange) is subtracted from the big one (shown in yellow). There is
a gap 1e-5 between the edges of these faces.
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The following results are obtained using Basic Operations and the Fuzzy ones with the fuzzy value 1e-5 :
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Figure 64: Result of CUT operation obtained with Basic Operations

Figure 65: Result of CUT operation obtained with Fuzzy Option
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In this example Fuzzy options eliminated a pin-like protrusion resulting from the gap between edges of the argument
faces.

11.2.4 Case 4

In this example the small edge is subtracted from the big one. The edges are overlapping not precisely, with max
deviation between them equal to 5.28004e-5 . We will use 6e-5 value for Fuzzy option.

The following results are obtained using Basic Operations and the Fuzzy ones with the fuzzy value 6e-5 :

Figure 66: Result of CUT operation obtained with Basic Operations
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Figure 67: Result of CUT operation obtained with Fuzzy Option

This example stresses not only the validity, but also the performance issue. The usage of Fuzzy option with the
appropriate value allows processing the case much faster than with the pure Basic operation. The performance
gain for the case is 45 (Processor: Intel(R) Core(TM) i5-3450 CPU @ 3.10 GHz).
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12 Usage

The chapter contains some examples of the OCCT Boolean Component usage. The usage is possible on two
levels: C++ and Tcl.

12.1 Package BRepAlgoAPI

The package BRepAlgoAPI provides the Application Programming Interface of the Boolean Component.

The package consists of the following classes:

• BRepAlgoAPI_Algo – the root class that provides the interface for algorithms.

• BRepAlgoAPI_BuilderAlgo – the class API level of General Fuse algorithm.

• BRepAlgoAPI_BooleanOperation – the root class for the classes BRepAlgoAPI_Fuse. BRepAlgoAPI_-
Common, BRepAlgoAPI_Cut and BRepAlgoAPI_Section.

• BRepAlgoAPI_Fuse – the class provides Boolean fusion operation.

• BRepAlgoAPI_Common – the class provides Boolean common operation.

• BRepAlgoAPI_Cut – the class provides Boolean cut operation.

• BRepAlgoAPI_Section – the class provides Boolean section operation.

BRepAlgoAPI_BuilderAlgo 

BRepAlgoAPI_Fuse
 

BRepAlgoAPI_BooleanOperation
 

 

BRepAlgoAPI_Cut
 

 

BRepAlgoAPI_Common BRepAlgoAPI_Section

BRepAlgoAPI_Algo

BRepBuilderAPI_MakeShape

Figure 68: Diagram of BRepAlgoAPI package

The detailed description of the classes can be found in the corresponding .hxx files. The examples are below in this
chapter.

12.2 Package BOPTest

The package BOPTest provides the usage of the Boolean Component on Tcl level. The method BOPTest::API-
Commands contains corresponding Tcl commands:

• bapibuild – for General Fuse Operator;

• bapibop – for Boolean Operator and Section Operator.

The examples of how to use the commands are below in this chapter.
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12.2.1 Case 1 General Fuse operation

The following example illustrates how to use General Fuse operator:

C++ Level

#include <TopoDS_Shape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <BRepAlgoAPI_BuilderAlgo.hxx>
{...
Standard_Boolean bRunParallel;
Standard_Integer iErr;
Standard_Real aFuzzyValue;
BRepAlgoAPI_BuilderAlgo aBuilder;
//
// prepare the arguments
TopTools_ListOfShape& aLS=...;
//
bRunParallel=Standard_True;
aFuzzyValue=2.1e-5;
//
// set the arguments
aBuilder.SetArguments(aLS);
// set parallel processing mode
// if bRunParallel= Standard_True : the parallel processing is switched on
// if bRunParallel= Standard_False : the parallel processing is switched off
aBuilder.SetRunParallel(bRunParallel);
//
// set Fuzzy value
// if aFuzzyValue=0.: the Fuzzy option is off
// if aFuzzyValue>0.: the Fuzzy option is on
aBuilder.SetFuzzyValue(aFuzzyValue);
//
// run the algorithm
aBuilder.Build();
iErr=aBuilder.ErrorStatus();
if (iErr) {
// an error treatment
return;

}
//
// result of the operation aR
const TopoDS_Shape& aR=aBuilder.Shape();

...
}

Tcl Level

# prepare the arguments
box b1 10 10 10
box b2 3 4 5 10 10 10
box b3 5 6 7 10 10 10
#
# clear inner contents
bclearobjects; bcleartools;
#
# set the arguments
baddobjects b1 b2 b3
# set parallel processing mode
# 1: the parallel processing is switched on
# 0: the parallel processing is switched off
brunparallel 1
# set Fuzzy value
# 0. : the Fuzzy option is off
# >0. : the Fuzzy option is on
bfuzzyvalue 0.
#
# run the algorithm
# r is the result of the operation
bapibuild r

12.2.2 Case 2. Common operation

The following example illustrates how to use Common operation:

C++ Level

#include <TopoDS_Shape.hxx>
#include <TopTools_ListOfShape.hxx>
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#include < BRepAlgoAPI_Common.hxx>
{...
Standard_Boolean bRunParallel;
Standard_Integer iErr;
Standard_Real aFuzzyValue;
BRepAlgoAPI_Common aBuilder;

// perpare the arguments
TopTools_ListOfShape& aLS=...;
TopTools_ListOfShape& aLT=...;
//
bRunParallel=Standard_True;
aFuzzyValue=2.1e-5;
//
// set the arguments
aBuilder.SetArguments(aLS);
aBuilder.SetTools(aLT);
//
// set parallel processing mode
// if bRunParallel= Standard_True : the parallel processing is switched on
// if bRunParallel= Standard_False : the parallel processing is switched off
aBuilder.SetRunParallel(bRunParallel);
//
// set Fuzzy value
// if aFuzzyValue=0.: the Fuzzy option is off
// if aFuzzyValue>0.: the Fuzzy option is on
aBuilder.SetFuzzyValue(aFuzzyValue);
//
// run the algorithm
aBuilder.Build();
iErr=aBuilder.ErrorStatus();
if (iErr) {
// an error treatment
return;

}
//
// result of the operation aR
const TopoDS_Shape& aR=aBuilder.Shape();

...
}

Tcl Level

# prepare the arguments
box b1 10 10 10
box b2 7 0 4 10 10 10
box b3 14 0 0 10 10 10
#
# clear inner contents
bclearobjects; bcleartools;
#
# set the arguments
baddobjects b1 b3
baddtools b2
#
# set parallel processing mode
# 1: the parallel processing is switched on
# 0: the parallel processing is switched off
brunparallel 1
#
# set Fuzzy value
# 0. : the Fuzzy option is off
# >0. : the Fuzzy option is on
bfuzzyvalue 0.
#
# run the algorithm
# r is the result of the operation
# 0 means Common operation
bapibop r 0

12.2.3 Case 3. Fuse operation

The following example illustrates how to use Fuse operation:

C++ Level

#include <TopoDS_Shape.hxx>
#include <TopTools_ListOfShape.hxx>
#include < BRepAlgoAPI_Fuse.hxx>
{...
Standard_Boolean bRunParallel;
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Standard_Integer iErr;
Standard_Real aFuzzyValue;
BRepAlgoAPI_Fuse aBuilder;

// perpare the arguments
TopTools_ListOfShape& aLS=...;
TopTools_ListOfShape& aLT=...;
//
bRunParallel=Standard_True;
aFuzzyValue=2.1e-5;
//
// set the arguments
aBuilder.SetArguments(aLS);
aBuilder.SetTools(aLT);
//
// set parallel processing mode
// if bRunParallel= Standard_True : the parallel processing is switched on
// if bRunParallel= Standard_False : the parallel processing is switched off
aBuilder.SetRunParallel(bRunParallel);
//
// set Fuzzy value
// if aFuzzyValue=0.: the Fuzzy option is off
// if aFuzzyValue>0.: the Fuzzy option is on
aBuilder.SetFuzzyValue(aFuzzyValue);
//
// run the algorithm
aBuilder.Build();
iErr=aBuilder.ErrorStatus();
if (iErr) {
// an error treatment
return;

}
//
// result of the operation aR
const TopoDS_Shape& aR=aBuilder.Shape();

...
}

Tcl Level

# prepare the arguments
box b1 10 10 10
box b2 7 0 4 10 10 10
box b3 14 0 0 10 10 10
#
# clear inner contents
bclearobjects; bcleartools;
#
# set the arguments
baddobjects b1 b3
baddtools b2
#
# set parallel processing mode
# 1: the parallel processing is switched on
# 0: the parallel processing is switched off
brunparallel 1
#
# set Fuzzy value
# 0. : the Fuzzy option is off
# >0. : the Fuzzy option is on
bfuzzyvalue 0.
#
# run the algorithm
# r is the result of the operation
# 1 means Fuse operation
bapibop r 1

12.2.4 Case 4. Cut operation

The following example illustrates how to use Cut operation:

C++ Level

#include <TopoDS_Shape.hxx>
#include <TopTools_ListOfShape.hxx>
#include < BRepAlgoAPI_Cut.hxx>
{...
Standard_Boolean bRunParallel;
Standard_Integer iErr;
Standard_Real aFuzzyValue;
BRepAlgoAPI_Cut aBuilder;

(c) Open CASCADE 2016



12.2 Package BOPTest 126

// perpare the arguments
TopTools_ListOfShape& aLS=...;
TopTools_ListOfShape& aLT=...;
//
bRunParallel=Standard_True;
aFuzzyValue=2.1e-5;
//
// set the arguments
aBuilder.SetArguments(aLS);
aBuilder.SetTools(aLT);
//
// set parallel processing mode
// if bRunParallel= Standard_True : the parallel processing is switched on
// if bRunParallel= Standard_False : the parallel processing is switched off
aBuilder.SetRunParallel(bRunParallel);
//
// set Fuzzy value
// if aFuzzyValue=0.: the Fuzzy option is off
// if aFuzzyValue>0.: the Fuzzy option is on
aBuilder.SetFuzzyValue(aFuzzyValue);
//
// run the algorithm
aBuilder.Build();
iErr=aBuilder.ErrorStatus();
if (iErr) {
// an error treatment
return;

}
//
// result of the operation aR
const TopoDS_Shape& aR=aBuilder.Shape();

...
}

Tcl Level

# prepare the arguments
box b1 10 10 10
box b2 7 0 4 10 10 10
box b3 14 0 0 10 10 10
#
# clear inner contents
bclearobjects; bcleartools;
#
# set the arguments
baddobjects b1 b3
baddtools b2
#
# set parallel processing mode
# 1: the parallel processing is switched on
# 0: the parallel processing is switched off
brunparallel 1
#
# set Fuzzy value
# 0. : the Fuzzy option is off
# >0. : the Fuzzy option is on
bfuzzyvalue 0.
#
# run the algorithm
# r is the result of the operation
# 2 means Cut operation
bapibop r 2

12.2.5 Case 5. Section operation

The following example illustrates how to use Section operation:

C++ Level

#include <TopoDS_Shape.hxx>
#include <TopTools_ListOfShape.hxx>
#include < BRepAlgoAPI_Section.hxx>
{...
Standard_Boolean bRunParallel;
Standard_Integer iErr;
Standard_Real aFuzzyValue;
BRepAlgoAPI_Section aBuilder;

// perpare the arguments
TopTools_ListOfShape& aLS=...;
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TopTools_ListOfShape& aLT=...;
//
bRunParallel=Standard_True;
aFuzzyValue=2.1e-5;
//
// set the arguments
aBuilder.SetArguments(aLS);
aBuilder.SetTools(aLT);
//
// set parallel processing mode
// if bRunParallel= Standard_True : the parallel processing is switched on
// if bRunParallel= Standard_False : the parallel processing is switched off
aBuilder.SetRunParallel(bRunParallel);
//
// set Fuzzy value
// if aFuzzyValue=0.: the Fuzzy option is off
// if aFuzzyValue>0.: the Fuzzy option is on
aBuilder.SetFuzzyValue(aFuzzyValue);
//
// run the algorithm
aBuilder.Build();
iErr=aBuilder.ErrorStatus();
if (iErr) {
// an error treatment
return;

}
//
// result of the operation aR
const TopoDS_Shape& aR=aBuilder.Shape();

...
}

Tcl Level

# prepare the arguments
box b1 10 10 10
box b2 3 4 5 10 10 10
box b3 5 6 7 10 10 10
#
# clear inner contents
bclearobjects; bcleartools;
#
# set the arguments
baddobjects b1 b3
baddtools b2
#
# set parallel processing mode
# 1: the parallel processing is switched on
# 0: the parallel processing is switched off
brunparallel 1
#
# set Fuzzy value
# 0. : the Fuzzy option is off
# >0. : the Fuzzy option is on
bfuzzyvalue 0.
#
# run the algorithm
# r is the result of the operation
# 4 means Section operation
bapibop r 4
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