
Open CASCADE Technology
7.0.0

Modeling Data

April 4, 2016

CONTENTS 1

Contents

1 Introduction . 2

2 Geometry Utilities . 3

2.1 Interpolations and Approximations . 3

2.1.1 Analysis of a set of points . 3

2.1.2 Basic Interpolation and Approximation . 3

2.1.3 Advanced Approximation . 5

2.2 Direct Construction . 7

2.2.1 Simple geometric entities . 7

2.2.2 Geometric entities manipulated by handle . 9

2.3 Conversion to and from BSplines . 10

2.4 Points on Curves . 11

2.5 Extrema . 11

3 2D Geometry . 13

4 3D Geometry . 15

5 Properties of Shapes . 17

5.1 Local Properties of Shapes . 17

5.2 Local Properties of Curves and Surfaces . 17

5.3 Global Properties of Shapes . 18

5.4 Adaptors for Curves and Surfaces . 19

6 Topology . 21

6.1 Shape Location . 22

6.2 Naming shapes, sub-shapes, their orientation and state . 23

6.2.1 Topological types . 23

6.2.2 Orientation . 24

6.2.3 State . 27

6.3 Manipulating shapes and sub-shapes . 28

6.4 Exploration of Topological Data Structures . 32

6.5 Lists and Maps of Shapes . 34

6.5.1 Wire Explorer . 36

(c) Open CASCADE 2016

1 Introduction 2

1 Introduction

Modeling Data supplies data structures to represent 2D and 3D geometric models.

This manual explains how to use Modeling Data. For advanced information on modeling data, see our
E-learning & Training offerings.

(c) Open CASCADE 2016

2 Geometry Utilities 3

2 Geometry Utilities

Geometry Utilities provide the following services:

• Creation of shapes by interpolation and approximation

• Direct construction of shapes

• Conversion of curves and surfaces to BSpline curves and surfaces

• Computation of the coordinates of points on 2D and 3D curves

• Calculation of extrema between shapes.

2.1 Interpolations and Approximations

In modeling, it is often required to approximate or interpolate points into curves and surfaces. In interpolation, the
process is complete when the curve or surface passes through all the points; in approximation, when it is as close
to these points as possible.

Approximation of Curves and Surfaces groups together a variety of functions used in 2D and 3D geometry for:

• the interpolation of a set of 2D points using a 2D BSpline or Bezier curve;

• the approximation of a set of 2D points using a 2D BSpline or Bezier curve;

• the interpolation of a set of 3D points using a 3D BSpline or Bezier curve, or a BSpline surface;

• the approximation of a set of 3D points using a 3D BSpline or Bezier curve, or a BSpline surface.

You can program approximations in two ways:

• Using high-level functions, designed to provide a simple method for obtaining approximations with minimal
programming,

• Using low-level functions, designed for users requiring more control over the approximations.

2.1.1 Analysis of a set of points

The class PEquation from GProp package allows analyzing a collection or cloud of points and verifying if they are
coincident, collinear or coplanar within a given precision. If they are, the algorithm computes the mean point, the
mean line or the mean plane of the points. If they are not, the algorithm computes the minimal box, which includes
all the points.

2.1.2 Basic Interpolation and Approximation

Packages Geom2dAPI and GeomAPI provide simple methods for approximation and interpolation with minimal
programming

2D Interpolation

The class Interpolate from Geom2dAPI package allows building a constrained 2D BSpline curve, defined by a table
of points through which the curve passes. If required, the parameter values and vectors of the tangents can be
given for each point in the table.

(c) Open CASCADE 2016

2.1 Interpolations and Approximations 4

3D Interpolation

The class Interpolate from GeomAPI package allows building a constrained 3D BSpline curve, defined by a table of
points through which the curve passes. If required, the parameter values and vectors of the tangents can be given
for each point in the table.

Figure 1: Approximation of a BSpline from scattered points

This class may be instantiated as follows:

GeomAPI_Interpolate Interp(Points);

From this object, the BSpline curve may be requested as follows:

Handle(Geom_BSplineCurve) C = Interp.Curve();

2D Approximation

The class PointsToBSpline from Geom2dAPI package allows building a 2DBSpline curve, which approximates a
set of points. You have to define the lowest and highest degree of the curve, its continuity and a tolerance value
for it.The tolerance value is used to check that points are not too close to each other, or tangential vectors not too
small. The resulting BSpline curve will beC2 or second degree continuous, except where a tangency constraint is
defined on a point through which the curve passes. In this case, it will be only C1continuous.

3D Approximation

The class PointsToBSpline from GeomAPI package allows building a 3D BSplinecurve, which approximates a set
of points. It is necessary to define the lowest and highest degree of the curve, its continuity and tolerance. The
tolerance value is used to check that points are not too close to each other,or that tangential vectors are not too
small.

The resulting BSpline curve will be C2 or second degree continuous, except where a tangency constraint is defined
on a point, through which the curve passes. In this case, it will be only C1 continuous. This class is instantiated as
follows:

GeomAPI_PointsToBSpline
Approx(Points,DegMin,DegMax,Continuity, Tol);

From this object, the BSpline curve may be requested as follows:

Handle(Geom_BSplineCurve) K = Approx.Curve();

Surface Approximation

The class PointsToBSplineSurface from GeomAPI package allows building a BSpline surface, which approximates
or interpolates a set of points.

(c) Open CASCADE 2016

2.1 Interpolations and Approximations 5

2.1.3 Advanced Approximation

Packages AppDef and AppParCurves provide low-level functions, allowing more control over the approximations.

The low-level functions provide a second API with functions to:

• Define compulsory tangents for an approximation. These tangents have origins and extremities.

• Approximate a set of curves in parallel to respect identical parameterization.

• Smooth approximations. This is to produce a faired curve.

You can also find functions to compute:

• The minimal box which includes a set of points

• The mean plane, line or point of a set of coplanar, collinear or coincident points.

Approximation by multiple point constraints

AppDef package provides low-level tools to allow parallel approximation of groups of points into Bezier or B-Spline
curves using multiple point constraints.

The following low level services are provided:

• Definition of an array of point constraints:

The class MultiLine allows defining a given number of multi-point constraints in order to build the multi-line,
multiple lines passing through ordered multiple point constraints.

Figure 2: Definition of a MultiLine using Multiple Point Constraints

In this image:

(c) Open CASCADE 2016

2.1 Interpolations and Approximations 6

– Pi, Qi, Ri ... Si can be 2D or 3D points.

– Defined as a group: Pn, Qn, Rn, ... Sn form a MultipointConstraint. They possess the same passage,
tangency and curvature constraints.

– P1, P2, ... Pn, or the Q, R, ... or S series represent the lines to be approximated.

• Definition of a set of point constraints:

The class MultiPointConstraint allows defining a multiple point constraint and computing the approximation of
sets of points to several curves.

• Computation of an approximation of a Bezier curve from a set of points:

The class Compute allows making an approximation of a set of points to a Bezier curve

• Computation of an approximation of a BSpline curve from a set of points:

The class BSplineCompute allows making an approximation of a set of points to a BSpline curve.

• Definition of Variational Criteria:

The class TheVariational allows fairing the approximation curve to a given number of points using a least squares
method in conjunction with a variational criterion, usually the weights at each constraint point.

Approximation by parametric or geometric constraints

AppParCurves package provides low-level tools to allow parallel approximation of groups of points into Bezier or
B-Spline curve with parametric or geometric constraints, such as a requirement for the curve to pass through given
points, or to have a given tangency or curvature at a particular point.

The algorithms used include:

• the least squares method

• a search for the best approximation within a given tolerance value.

The following low-level services are provided:

• Association of an index to an object:

The class ConstraintCouple allows you associating an index to an object to compute faired curves using AppDef_-
TheVariational.

• Definition of a set of approximations of Bezier curves:

The class MultiCurve allows defining the approximation of a multi-line made up of multiple Bezier curves.

• Definition of a set of approximations of BSpline curves:

The class MultiBSpCurve allows defining the approximation of a multi-line made up of multiple BSpline curves.

• Definition of points making up a set of point constraints

The class MultiPoint allows defining groups of 2D or 3D points making up a multi-line.

Example: How to approximate a curve with respect to tangency

To approximate a curve with respect to tangency, follow these steps:

1. Create an object of type AppDef_MultiPointConstraints from the set of points to approximate and use the
method SetTang to set the tangency vectors.

2. Create an object of type AppDef_MultiLine from the AppDef_MultiPointConstraint.

3. Use AppDef_BSplineCompute, which instantiates Approx_BSplineComputeLine to perform the approxima-
tion.

(c) Open CASCADE 2016

2.2 Direct Construction 7

2.2 Direct Construction

Direct Construction methods from gce, GC and GCE2d packages provide simplified algorithms to build elementary
geometric entities such as lines, circles and curves. They complement the reference definitions provided by the gp,
Geom and Geom2d packages.

The algorithms implemented by gce, GCE2d and GC packages are simple: there is no creation of objects defined by
advanced positional constraints (for more information on this subject, see Geom2dGcc and GccAna, which describe
geometry by constraints).

For example, to construct a circle from a point and a radius using the gp package, it is necessary to construct axis
Ax2d before creating the circle. If gce package is used, and Ox is taken for the axis, it is possible to create a circle
directly from a point and a radius.

Another example is the class gce_MakeCirc providing a framework for defining eight problems encountered in the
geometric construction of circles and implementing the eight related construction algorithms.

The object created (or implemented) is an algorithm which can be consulted to find out, in particular:

• its result, which is a gp_Circ, and

• its status. Here, the status indicates whether or not the construction was successful.

If it was unsuccessful, the status gives the reason for the failure.

gp_Pnt P1 (0.,0.,0.);
gp_Pnt P2 (0.,10.,0.);
gp_Pnt P3 (10.,0.,0.);
gce_MakeCirc MC (P1,P2,P3);
if (MC.IsDone()) {

const gp_Circ& C = MC.Value();
}

In addition, gce, GCE2d and GC each have a Root class. This class is the root of all classes in the package, which
return a status. The returned status (successful construction or construction error) is described by the enumeration
gce_ErrorType.

Note, that classes, which construct geometric transformations do not return a status, and therefore do not inherit
from Root.

2.2.1 Simple geometric entities

The following algorithms used to build entities from gp package are provided by gce package.

• 2D line parallel to another at a distance,

• 2D line parallel to another passing through a point,

• 2D circle passing through two points,

• 2D circle parallel to another at a distance,

• 2D circle parallel to another passing through a point,

• 2D circle passing through three points,

• 2D circle from a center and a radius,

• 2D hyperbola from five points,

• 2D hyperbola from a center and two apexes,

• 2D ellipse from five points,

• 2D ellipse from a center and two apexes,

(c) Open CASCADE 2016

2.2 Direct Construction 8

• 2D parabola from three points,

• 2D parabola from a center and an apex,

• line parallel to another passing through a point,

• line passing through two points,

• circle coaxial to another passing through a point,

• circle coaxial to another at a given distance,

• circle passing through three points,

• circle with its center, radius, and normal to the plane,

• circle with its axis (center + normal),

• hyperbola with its center and two apexes,

• ellipse with its center and two apexes,

• plane passing through three points,

• plane from its normal,

• plane parallel to another plane at a given distance,

• plane parallel to another passing through a point,

• plane from an array of points,

• cylinder from a given axis and a given radius,

• cylinder from a circular base,

• cylinder from three points,

• cylinder parallel to another cylinder at a given distance,

• cylinder parallel to another cylinder passing through a point,

• cone from four points,

• cone from a given axis and two passing points,

• cone from two points (an axis) and two radii,

• cone parallel to another at a given distance,

• cone parallel to another passing through a point,

• all transformations (rotations, translations, mirrors,scaling transformations, etc.).

Each class from gp package, such as Circ, Circ2d, Mirror, Mirror2d, etc., has the corresponding MakeCirc, Make-
Circ2d, MakeMirror, MakeMirror2d, etc. class from gce package.

It is possible to create a point using a gce package class, then question it to recover the corresponding gp object.

gp_Pnt2d Point1,Point2;
...
//Initialization of Point1 and Point2
gce_MakeLin2d L = gce_MakeLin2d(Point1,Point2);
if (L.Status() == gce_Done()){

gp_Lin2d l = L.Value();
}

This is useful if you are uncertain as to whether the arguments can create the gp object without raising an exception.
In the case above, if Point1 and Point2 are closer than the tolerance value required by MakeLin2d, the function
Status will return the enumeration gce_ConfusedPoint. This tells you why the gp object cannot be created. If you
know that the points Point1 and Point2 are separated by the value exceeding the tolerance value, then you may
create the gp object directly, as follows:

gp_Lin2d l = gce_MakeLin2d(Point1,Point2);

(c) Open CASCADE 2016

2.2 Direct Construction 9

2.2.2 Geometric entities manipulated by handle

GC and GCE2d packages provides an implementation of algorithms used to build entities from Geom and Geom2-
D packages. They implement the same algorithms as the gce package, and also contain algorithms for trimmed
surfaces and curves. The following algorithms are available:

• arc of a circle trimmed by two points,

• arc of a circle trimmed by two parameters,

• arc of a circle trimmed by one point and one parameter,

• arc of an ellipse from an ellipse trimmed by two points,

• arc of an ellipse from an ellipse trimmed by two parameters,

• arc of an ellipse from an ellipse trimmed by one point and one parameter,

• arc of a parabola from a parabola trimmed by two points,

• arc of a parabola from a parabola trimmed by two parameters,

• arc of a parabola from a parabola trimmed by one point and one parameter,

• arc of a hyperbola from a hyperbola trimmed by two points,

• arc of a hyperbola from a hyperbola trimmed by two parameters,

• arc of a hyperbola from a hyperbola trimmed by one point and one parameter,

• segment of a line from two points,

• segment of a line from two parameters,

• segment of a line from one point and one parameter,

• trimmed cylinder from a circular base and a height,

• trimmed cylinder from three points,

• trimmed cylinder from an axis, a radius, and a height,

• trimmed cone from four points,

• trimmed cone from two points (an axis) and a radius,

• trimmed cone from two coaxial circles.

Each class from GCE2d package, such as Circle, Ellipse, Mirror, etc., has the corresponding MakeCircle, Make-
Ellipse, MakeMirror, etc. class from Geom2d package. Besides, the class MakeArcOfCircle returns an object of
type TrimmedCurve from Geom2d.

Each class from GC package, such as Circle, Ellipse, Mirror, etc., has the corresponding MakeCircle, MakeEllipse,
MakeMirror, etc. class from Geom package. The following classes return objects of type TrimmedCurve from Geom:

• MakeArcOfCircle

• MakeArcOfEllipse

• MakeArcOfHyperbola

• MakeArcOfParabola

• MakeSegment

(c) Open CASCADE 2016

2.3 Conversion to and from BSplines 10

2.3 Conversion to and from BSplines

The Conversion to and from BSplines component has two distinct purposes:

• Firstly, it provides a homogeneous formulation which can be used to describe any curve or surface. This is
useful for writing algorithms for a single data structure model. The BSpline formulation can be used to rep-
resent most basic geometric objects provided by the components which describe geometric data structures
("Fundamental Geometry Types", "2D Geometry Types" and "3D Geometry Types" components).

• Secondly, it can be used to divide a BSpline curve or surface into a series of curves or surfaces, thereby
providing a higher degree of continuity. This is useful for writing algorithms which require a specific degree of
continuity in the objects to which they are applied. Discontinuities are situated on the boundaries of objects
only.

The "Conversion to and from BSplines" component is composed of three packages.

The Convert package provides algorithms to convert the following into a BSpline curve or surface:

• a bounded curve based on an elementary 2D curve (line, circle or conic) from the gp package,

• a bounded surface based on an elementary surface (cylinder, cone, sphere or torus) from the gp package,

• a series of adjacent 2D or 3D Bezier curves defined by their poles.

These algorithms compute the data needed to define the resulting BSpline curve or surface. This elementary
data (degrees, periodic characteristics, poles and weights, knots and multiplicities) may then be used directly in an
algorithm, or can be used to construct the curve or the surface by calling the appropriate constructor provided by
the classes Geom2d_BSplineCurve, Geom_BSplineCurve or Geom_BSplineSurface.

The Geom2dConvert package provides the following:

• a global function which is used to construct a BSpline curve from a bounded curve based on a 2D curve from
the Geom2d package,

• a splitting algorithm which computes the points at which a 2D BSpline curve should be cut in order to obtain
arcs with the same degree of continuity,

• global functions used to construct the BSpline curves created by this splitting algorithm, or by other types of
segmentation of the BSpline curve,

• an algorithm which converts a 2D BSpline curve into a series of adjacent Bezier curves.

The GeomConvert package also provides the following:

• a global function used to construct a BSpline curve from a bounded curve based on a curve from the Geom
package,

• a splitting algorithm, which computes the points at which a BSpline curve should be cut in order to obtain arcs
with the same degree of continuity,

• global functions to construct BSpline curves created by this splitting algorithm, or by other types of BSpline
curve segmentation,

• an algorithm, which converts a BSpline curve into a series of adjacent Bezier curves,

• a global function to construct a BSpline surface from a bounded surface based on a surface from the Geom
package,

• a splitting algorithm, which determines the curves along which a BSpline surface should be cut in order to
obtain patches with the same degree of continuity,

• global functions to construct BSpline surfaces created by this splitting algorithm, or by other types of BSpline
surface segmentation,

• an algorithm, which converts a BSpline surface into a series of adjacent Bezier surfaces,

• an algorithm, which converts a grid of adjacent Bezier surfaces into a BSpline surface.

(c) Open CASCADE 2016

2.4 Points on Curves 11

2.4 Points on Curves

The Points on Curves component comprises high level functions providing an API for complex algorithms that
compute points on a 2D or 3D curve.

The following characteristic points exist on parameterized curves in 3d space:

• points equally spaced on a curve,

• points distributed along a curve with equal chords,

• a point at a given distance from another point on a curve.

GCPnts package provides algorithms to calculate such points:

• AbscissaPoint calculates a point on a curve at a given distance from another point on the curve.

• UniformAbscissa calculates a set of points at a given abscissa on a curve.

• UniformDeflection calculates a set of points at maximum constant deflection between the curve and the
polygon that results from the computed points.

Example: Visualizing a curve.

Let us take an adapted curve C, i.e. an object which is an interface between the services provided by either a 2D
curve from the package Geom2d (in case of an Adaptor_Curve2d curve) or a 3D curve from the package Geom
(in case of an Adaptor_Curve curve), and the services required on the curve by the computation algorithm. The
adapted curve is created in the following way:

2D case :

Handle(Geom2d_Curve) mycurve = ... ;
Geom2dAdaptor_Curve C (mycurve) ;

3D case :

Handle(Geom_Curve) mycurve = ... ;
GeomAdaptor_Curve C (mycurve) ;

The algorithm is then constructed with this object:

GCPnts_UniformDeflection myAlgo () ;
Standard_Real Deflection = ... ;
myAlgo.Initialize (C , Deflection) ;
if (myAlgo.IsDone())
{

Standard_Integer nbr = myAlgo.NbPoints() ;
Standard_Real param ;
for (Standard_Integer i = 1 ; i <= nbr ; i++)
{
param = myAlgo.Parameter (i) ;
...

}
}

2.5 Extrema

The classes to calculate the minimum distance between points, curves, and surfaces in 2d and 3d are provided by
GeomAPI and Geom2dAPI packages.

These packages calculate the extrema of distance between:

• point and a curve,

(c) Open CASCADE 2016

2.5 Extrema 12

• point and a surface,

• two curves,

• a curve and a surface,

• two surfaces.

Extrema between Curves

The Geom2dAPI_ExtremaCurveCurve class allows calculation of all extrema between two 2D geometric curves.
Extrema are the lengths of the segments orthogonal to two curves.

The GeomAPI_ExtremaCurveCurve class allows calculation of all extrema between two 3D geometric curves. Ex-
trema are the lengths of the segments orthogonal to two curves.

Extrema between Curve and Surface

The GeomAPI_ExtremaCurveSurface class allows calculation of all extrema between a 3D curve and a surface.
Extrema are the lengths of the segments orthogonal to the curve and the surface.

Extrema between Surfaces

The GeomAPI_ExtremaSurfaceSurface class allows calculation of all extrema between two surfaces. Extrema are
the lengths of the segments orthogonal to two surfaces.

(c) Open CASCADE 2016

3 2D Geometry 13

3 2D Geometry

Geom2d package defines geometric objects in 2dspace. All geometric entities are STEP processed. The objects
are handled by reference.

In particular, Geom2d package provides classes for:

• description of points, vectors and curves,

• their positioning in the plane using coordinate systems,

• their geometric transformation, by applying translations, rotations, symmetries, scaling transformations and
combinations thereof.

The following objects are available:

• point,

• Cartesian point,

• vector,

• direction,

• vector with magnitude,

• axis,

• curve,

• line,

• conic: circle, ellipse, hyperbola, parabola,

• rounded curve: trimmed curve, NURBS curve, Bezier curve,

• offset curve.

Before creating a geometric object, it is necessary to decide how the object is handled. The objects provided
by Geom2d package are handled by reference rather than by value. Copying an instance copies the handle, not
the object, so that a change to one instance is reflected in each occurrence of it. If a set of object instances is
needed rather than a single object instance, TColGeom2d package can be used. This package provides standard
and frequently used instantiations of one-dimensional arrays and sequences for curves from Geom2d package. All
objects are available in two versions:

• handled by reference and

• handled by value.

The key characteristic of Geom2d curves is that they are parameterized. Each class provides functions to work
with the parametric equation of the curve, and, in particular, to compute the point of parameter u on a curve and the
derivative vectors of order 1, 2.., N at this point.

As a consequence of the parameterization, a Geom2d curve is naturally oriented.

Parameterization and orientation differentiate elementary Geom2dcurves from their equivalent as provided by gp
package. Geom2d package provides conversion functions to transform a Geom2d object into a gp object, and
vice-versa, when this is possible.

Moreover, Geom2d package provides more complex curves, including Bezier curves, BSpline curves, trimmed
curves and offset curves.

Geom2d objects are organized according to an inheritance structure over several levels.

Thus, an ellipse (specific class Geom2d_Ellipse) is also a conical curve and inherits from the abstract class
Geom2d_Conic, while a Bezier curve (concrete class Geom2d_BezierCurve) is also a bounded curve and inherits

(c) Open CASCADE 2016

3 2D Geometry 14

from the abstract class Geom2d_BoundedCurve; both these examples are also curves (abstract class Geom2d_-
Curve). Curves, points and vectors inherit from the abstract class Geom2d_Geometry, which describes the proper-
ties common to any geometric object from the Geom2d package.

This inheritance structure is open and it is possible to describe new objects, which inherit from those provided in the
Geom2d package, provided that they respect the behavior of the classes from which they are to inherit.

Finally, Geom2d objects can be shared within more complex data structures. This is why they are used within
topological data structures, for example.

Geom2dpackage uses the services of the gp package to:

• implement elementary algebraic calculus and basic analytic geometry,

• describe geometric transformations which can be applied to Geom2d objects,

• describe the elementary data structures of Geom2d objects.

However, the Geom2d package essentially provides data structures and not algorithms. You can refer to the GCE2d
package to find more evolved construction algorithms for Geom2d objects.

(c) Open CASCADE 2016

4 3D Geometry 15

4 3D Geometry

The Geom package defines geometric objects in 3d space and contains all basic geometric transformations, such
as identity, rotation, translation, mirroring, scale transformations, combinations of transformations, etc. as well as
special functions depending on the reference definition of the geometric object (e.g. addition of a control point on a
B-Spline curve,modification of a curve, etc.). All geometrical entities are STEP processed.

In particular, it provides classes for:

• description of points, vectors, curves and surfaces,

• their positioning in 3D space using axis or coordinate systems, and

• their geometric transformation, by applying translations, rotations, symmetries, scaling transformations and
combinations thereof.

The following objects are available:

• Point

• Cartesian point

• Vector

• Direction

• Vector with magnitude

• Axis

• Curve

• Line

• Conic: circle, ellipse, hyperbola, parabola

• Offset curve

• Elementary surface: plane, cylinder, cone, sphere, torus

• Bounded curve: trimmed curve, NURBS curve, Bezier curve

• Bounded surface: rectangular trimmed surface, NURBS surface,Bezier surface

• Swept surface: surface of linear extrusion, surface of revolution

• Offset surface.

The key characteristic of Geom curves and surfaces is that they are parameterized. Each class provides functions
to work with the parametric equation of the curve or surface, and, in particular, to compute:

• the point of parameter u on a curve, or

• the point of parameters (u, v) on a surface. together with the derivative vectors of order 1, 2, ... N at this point.

As a consequence of this parameterization, a Geom curve or surface is naturally oriented.

Parameterization and orientation differentiate elementary Geom curves and surfaces from the classes of the same
(or similar) names found in gp package. Geom package also provides conversion functions to transform a Geom
object into a gp object, and vice-versa, when such transformation is possible.

Moreover, Geom package provides more complex curves and surfaces, including:

• Bezier and BSpline curves and surfaces,

(c) Open CASCADE 2016

4 3D Geometry 16

• swept surfaces, for example surfaces of revolution and surfaces of linear extrusion,

• trimmed curves and surfaces, and

• offset curves and surfaces.

Geom objects are organized according to an inheritance structure over several levels. Thus, a sphere (con-
crete class Geom_SphericalSurface) is also an elementary surface and inherits from the abstract class Geom_-
ElementarySurface, while a Bezier surface (concrete class Geom_BezierSurface) is also a bounded surface and
inherits from the abstract class Geom_BoundedSurface; both these examples are also surfaces (abstract class
Geom_Surface). Curves, points and vectors inherit from the abstract class Geom_Geometry, which describes the
properties common to any geometric object from the Geom package.

This inheritance structure is open and it is possible to describe new objects, which inherit from those provided in the
Geom package, on the condition that they respect the behavior of the classes from which they are to inherit.

Finally, Geom objects can be shared within more complex data structures. This is why they are used within topo-
logical data structures, for example.

If a set of object instances is needed rather than a single object instance, TColGeom package can be used. This
package provides instantiations of one- and two-dimensional arrays and sequences for curves from Geom package.
All objects are available in two versions:

• handled by reference and

• handled by value.

The Geom package uses the services of the gp package to:

• implement elementary algebraic calculus and basic analytic geometry,

• describe geometric transformations which can be applied to Geom objects,

• describe the elementary data structures of Geom objects.

However, the Geom package essentially provides data structures, not algorithms.

You can refer to the GC package to find more evolved construction algorithms for Geom objects.

(c) Open CASCADE 2016

5 Properties of Shapes 17

5 Properties of Shapes

5.1 Local Properties of Shapes

BRepLProp package provides the Local Properties of Shapes component, which contains algorithms computing
various local properties on edges and faces in a BRep model.

The local properties which may be queried are:

• for a point of parameter u on a curve which supports an edge :

– the point,

– the derivative vectors, up to the third degree,

– the tangent vector,

– the normal,

– the curvature, and the center of curvature;

• for a point of parameter (u, v) on a surface which supports a face :

– the point,

– the derivative vectors, up to the second degree,

– the tangent vectors to the u and v isoparametric curves,

– the normal vector,

– the minimum or maximum curvature, and the corresponding directions of curvature;

• the degree of continuity of a curve which supports an edge, built by the concatenation of two other edges, at
their junction point.

Analyzed edges and faces are described as BRepAdaptor curves and surfaces, which provide shapes with an
interface for the description of their geometric support. The base point for local properties is defined by its u
parameter value on a curve, or its (u, v) parameter values on a surface.

5.2 Local Properties of Curves and Surfaces

The "Local Properties of Curves and Surfaces" component provides algorithms for computing various local proper-
ties on a Geom curve (in 2D or 3D space) or a surface. It is composed of:

• Geom2dLProp package, which allows computing Derivative and Tangent vectors (normal and curvature) of a
parametric point on a 2D curve;

• GeomLProp package, which provides local properties on 3D curves and surfaces

• LProp package, which provides an enumeration used to characterize a particular point on a 2D curve.

Curves are either Geom_Curve curves (in 3D space) or Geom2d_Curve curves (in the plane). Surfaces are
Geom_Surface surfaces. The point on which local properties are calculated is defined by its u parameter value on
a curve, and its (u,v) parameter values on a surface.

It is possible to query the same local properties for points as mentioned above, and additionally for 2D curves:

• the points corresponding to a minimum or a maximum of curvature;

• the inflection points.

(c) Open CASCADE 2016

5.3 Global Properties of Shapes 18

Example: How to check the surface concavity

To check the concavity of a surface, proceed as follows:

1. Sample the surface and compute at each point the Gaussian curvature.

2. If the value of the curvature changes of sign, the surface is concave or convex depending on the point of view.

3. To compute a Gaussian curvature, use the class SLprops from GeomLProp, which instantiates the generic
class SLProps from LProp and use the method GaussianCurvature.

5.3 Global Properties of Shapes

The Global Properties of Shapes component provides algorithms for computing the global properties of a composite
geometric system in 3D space, and frameworks to query the computed results.

The global properties computed for a system are :

• mass,

• mass center,

• matrix of inertia,

• moment about an axis,

• radius of gyration about an axis,

• principal properties of inertia such as principal axis, principal moments, and principal radius of gyration.

Geometric systems are generally defined as shapes. Depending on the way they are analyzed, these shapes will
give properties of:

• lines induced from the edges of the shape,

• surfaces induced from the faces of the shape, or

• volumes induced from the solid bounded by the shape.

The global properties of several systems may be brought together to give the global properties of the system
composed of the sum of all individual systems.

The Global Properties of Shapes component is composed of:

• seven functions for computing global properties of a shape: one function for lines, two functions for surfaces
and four functions for volumes. The choice of functions depends on input parameters and algorithms used for
computation (BRepGProp global functions),

• a framework for computing global properties for a set of points (GProp_PGProps),

• a general framework to bring together the global properties retained by several more elementary frameworks,
and provide a general programming interface to consult computed global properties.

Packages GeomLProp and Geom2dLProp provide algorithms calculating the local properties of curves and surfaces

A curve (for one parameter) has the following local properties:

• Point

• Derivative

• Tangent

(c) Open CASCADE 2016

5.4 Adaptors for Curves and Surfaces 19

• Normal

• Curvature

• Center of curvature.

A surface (for two parameters U and V) has the following local properties:

• point

• derivative for U and V)

• tangent line (for U and V)

• normal

• max curvature

• min curvature

• main directions of curvature

• mean curvature

• Gaussian curvature

The following methods are available:

• CLProps – calculates the local properties of a curve (tangency, curvature,normal);

• CurAndInf2d – calculates the maximum and minimum curvatures and the inflection points of 2d curves;

• SLProps – calculates the local properties of a surface (tangency, the normal and curvature).

• Continuity – calculates regularity at the junction of two curves.

Note that the B-spline curve and surface are accepted but they are not cut into pieces of the desired continuity. It is
the global continuity, which is seen.

5.4 Adaptors for Curves and Surfaces

Some Open CASCADE Technology general algorithms may work theoretically on numerous types of curves or
surfaces.

To do this, they simply get the services required of the analyzed curve or surface through an interface so as to a
single API, whatever the type of curve or surface. These interfaces are called adaptors.

For example, Adaptor3d_Curve is the abstract class which provides the required services by an algorithm which
uses any 3d curve.

GeomAdaptor package provides interfaces:

• On a Geom curve;

• On a curve lying on a Geom surface;

• On a Geom surface;

Geom2dAdaptor package provides interfaces :

• On a Geom2d curve.

BRepAdaptor package provides interfaces:

(c) Open CASCADE 2016

5.4 Adaptors for Curves and Surfaces 20

• On a Face

• On an Edge

When you write an algorithm which operates on geometric objects, use Adaptor3d (or Adaptor2d) objects.

As a result, you can use the algorithm with any kind of object, if you provide for this object an interface derived
from Adaptor3d or Adaptor2d. These interfaces are easy to use: simply create an adapted curve or surface from a
Geom2d curve, and then use this adapted curve as an argument for the algorithm? which requires it.

(c) Open CASCADE 2016

6 Topology 21

6 Topology

OCCT Topology allows accessing and manipulating data of objects without dealing with their 2D or 3D represen-
tations. Whereas OCCT Geometry provides a description of objects in terms of coordinates or parametric values,
Topology describes data structures of objects in parametric space. These descriptions use location in and restriction
of parts of this space.

Topological library allows you to build pure topological data structures. Topology defines relationships between
simple geometric entities. In this way, you can model complex shapes as assemblies of simpler entities. Due to a
built-in non-manifold (or mixed-dimensional) feature, you can build models mixing:

• 0D entities such as points;

• 1D entities such as curves;

• 2D entities such as surfaces;

• 3D entities such as volumes.

You can, for example, represent a single object made of several distinct bodies containing embedded curves and
surfaces connected or non-connected to an outer boundary.

Abstract topological data structure describes a basic entity – a shape, which can be divided into the following
component topologies:

• Vertex – a zero-dimensional shape corresponding to a point in geometry;

• Edge – a shape corresponding to a curve, and bound by a vertex at each extremity;

• Wire – a sequence of edges connected by their vertices;

• Face – part of a plane (in 2D geometry) or a surface (in 3D geometry) bounded by a closed wire;

• Shell – a collection of faces connected by some edges of their wire boundaries;

• Solid – a part of 3D space bound by a shell;

• Compound solid – a collection of solids.

The wire and the solid can be either infinite or closed.

A face with 3D underlying geometry may also refer to a collection of connected triangles that approximate the
underlying surface. The surfaces can be undefined leaving the faces represented by triangles only. If so, the model
is purely polyhedral.

Topology defines the relationship between simple geometric entities, which can thus be linked together to represent
complex shapes.

Abstract Topology is provided by six packages. The first three packages describe the topological data structure
used in Open CASCADE Technology:

• TopAbs package provides general resources for topology-driven applications. It contains enumerations that
are used to describe basic topological notions: topological shape, orientation and state. It also provides
methods to manage these enumerations.

• TopLoc package provides resources to handle 3D local coordinate systems: Datum3Dand Location. Datum3-
D describes an elementary coordinate system, while Location comprises a series of elementary coordinate
systems.

• TopoDS package describes classes to model and build data structures that are purely topological.

Three additional packages provide tools to access and manipulate this abstract topology:

• TopTools package provides basic tools to use on topological data structures.

(c) Open CASCADE 2016

6.1 Shape Location 22

• TopExp package provides classes to explore and manipulate the topological data structures described in the
TopoDS package.

• BRepTools package provides classes to explore, manipulate, read and write BRep data structures. These
more complex data structures combine topological descriptions with additional geometric information, and
include rules for evaluating equivalence of different possible representations of the same object, for example,
a point.

6.1 Shape Location

A local coordinate system can be viewed as either of the following:

• A right-handed trihedron with an origin and three orthonormal vectors. The gp_Ax2 package corresponds to
this definition.

• A transformation of a +1 determinant, allowing the transformation of coordinates between local and global
references frames. This corresponds to the gp_Trsf.

TopLoc package distinguishes two notions:

• TopLoc_Datum3D class provides the elementary reference coordinate, represented by a right-handed or-
thonormal system of axes or by a right-handed unitary transformation.

• TopLoc_Location class provides the composite reference coordinate made from elementary ones. It is a
marker composed of a chain of references to elementary markers. The resulting cumulative transformation is
stored in order to avoid recalculating the sum of the transformations for the whole list.

Figure 3: Structure of TopLoc_Location

(c) Open CASCADE 2016

6.2 Naming shapes, sub-shapes, their orientation and state 23

Two reference coordinates are equal if they are made up of the same elementary coordinates in the same order.
There is no numerical comparison. Two coordinates can thus correspond to the same transformation without being
equal if they were not built from the same elementary coordinates.

For example, consider three elementary coordinates: R1, R2, R3 The composite coordinates are: C1 = R1 ∗ R2,
C2 = R2 ∗ R3 C3 = C1 ∗ R3 C4 = R1 ∗ C2

NOTE C3 and C4 are equal because they are both R1 ∗ R2 ∗ R3.

The TopLoc package is chiefly targeted at the topological data structure, but it can be used for other purposes.

Change of coordinates

TopLoc_Datum3D class represents a change of elementary coordinates. Such changes must be shared so this
class inherits from MMgt_TShared. The coordinate is represented by a transformation gp_Trsfpackage. This trans-
formation has no scaling factor.

6.2 Naming shapes, sub-shapes, their orientation and state

The TopAbs package provides general enumerations describing the basic concepts of topology and methods to
handle these enumerations. It contains no classes. This package has been separated from the rest of the topology
because the notions it contains are sufficiently general to be used by all topological tools. This avoids redefinition of
enumerations by remaining independent of modeling resources. The TopAbs package defines three notions:

• Type TopAbs_ShapeEnum;

• Orientation TopAbs_Orientation ;

• State StateTopAbs_State

6.2.1 Topological types

TopAbs contains the TopAbs_ShapeEnum enumeration,which lists the different topological types:

• COMPOUND – a group of any type of topological objects.

• COMPSOLID – a composite solid is a set of solids connected by their faces. It expands the notions of WIRE
and SHELL to solids.

• SOLID – a part of space limited by shells. It is three dimensional.

• SHELL – a set of faces connected by their edges. A shell can be open or closed.

• FACE – in 2D it is a part of a plane; in 3D it is a part of a surface. Its geometry is constrained (trimmed) by
contours. It is two dimensional.

• WIRE – a set of edges connected by their vertices. It can be an open or closed contour depending on whether
the edges are linked or not.

• EDGE – a topological element corresponding to a restrained curve. An edge is generally limited by vertices.
It has one dimension.

• VERTEX – a topological element corresponding to a point. It has zero dimension.

• SHAPE – a generic term covering all of the above.

A topological model can be considered as a graph of objects with adjacency relationships. When modeling a part in
2D or 3D space it must belong to one of the categories listed in the ShapeEnum enumeration. The TopAbspackage
lists all the objects, which can be found in any model. It cannot be extended but a subset can be used. For example,
the notion of solid is useless in 2D.

(c) Open CASCADE 2016

6.2 Naming shapes, sub-shapes, their orientation and state 24

The terms of the enumeration appear in order from the most complex to the most simple, because objects can
contain simpler objects in their description. For example, a face references its wires, edges, and vertices.

Figure 4: ShapeEnum

6.2.2 Orientation

The notion of orientation is represented by the TopAbs_Orientation enumeration. Orientation is a generalized
notion of the sense of direction found in various modelers. This is used when a shape limits a geometric domain;
and is closely linked to the notion of boundary. The three cases are the following:

• Curve limited by a vertex.

• Surface limited by an edge.

• Space limited by a face.

In each case the topological form used as the boundary of a geometric domain of a higher dimension defines two
local regions of which one is arbitrarily considered as the default region.

For a curve limited by a vertex the default region is the set of points with parameters greater than the vertex. That
is to say it is the part of the curve after the vertex following the natural direction along the curve.

For a surface limited by an edge the default region is on the left of the edge following its natural direction. More
precisely it is the region pointed to by the vector product of the normal vector to the surface and the vector tangent
to the curve.

For a space limited by a face the default region is found on the negative side of the normal to the surface.

(c) Open CASCADE 2016

6.2 Naming shapes, sub-shapes, their orientation and state 25

Based on this default region the orientation allows definition of the region to be kept, which is called the interior or
material. There are four orientations defining the interior.

(c) Open CASCADE 2016

6.2 Naming shapes, sub-shapes, their orientation and state 26

Orientation Description
FORWARD The interior is the default region.
REVERSED The interior is the region complementary to the

default.
INTERNAL The interior includes both regions. The boundary lies

inside the material. For example a surface inside a
solid.

EXTERNAL The interior includes neither region. The boundary
lies outside the material. For example an edge in a
wire-frame model.

Figure 5: Four Orientations

The notion of orientation is a very general one, and it can be used in any context where regions or boundaries
appear. Thus, for example, when describing the intersection of an edge and a contour it is possible to describe not
only the vertex of intersection but also how the edge crosses the contour considering it as a boundary. The edge
would therefore be divided into two regions: exterior and interior and the intersection vertex would be the boundary.
Thus an orientation can be associated with an intersection vertex as in the following figure:

Orientation Association
FORWARD Entering
REVERSED Exiting
INTERNAL Touching from inside
EXTERNAL Touching from outside

Figure 6: Four orientations of intersection vertices

Along with the Orientation enumeration the TopAbs package defines four methods:

(c) Open CASCADE 2016

6.2 Naming shapes, sub-shapes, their orientation and state 27

6.2.3 State

The TopAbs_State enumeration described the position of a vertex or a set of vertices with respect to a region.
There are four terms:

(c) Open CASCADE 2016

6.3 Manipulating shapes and sub-shapes 28

Position Description
IN The point is interior.
OUT The point is exterior.
ON The point is on the boundary(within tolerance).
UNKNOWN The state of the point is indeterminate.

The UNKNOWN term has been introduced because this enumeration is often used to express the result of a
calculation, which can fail. This term can be used when it is impossible to know if a point is inside or outside, which
is the case with an open wire or face.

Figure 7: The four states

The State enumeration can also be used to specify various parts of an object. The following figure shows the parts
of an edge intersecting a face.

Figure 8: State specifies the parts of an edge intersecting a face

6.3 Manipulating shapes and sub-shapes

The TopoDS package describes the topological data structure with the following characteristics:

• reference to an abstract shape with neither orientation nor location.

• Access to the data structure through the tool classes.

(c) Open CASCADE 2016

6.3 Manipulating shapes and sub-shapes 29

As stated above, OCCT Topology describes data structures of objects in parametric space. These descriptions use
localization in and restriction of parts of this space. The types of shapes, which can be described in these terms,
are the vertex, the face and the shape. The vertex is defined in terms of localization in parametric space, and the
face and shape, in terms of restriction of this space.

OCCT topological descriptions also allow the simple shapes defined in these terms to be combined into sets. For
example, a set of edges forms a wire; a set of faces forms a shell, and a set of solids forms a composite solid
(CompSolid in Open CASCADE Technology). You can also combine shapes of either sort into compounds. Finally,
you can give a shape an orientation and a location.

Listing shapes in order of complexity from vertex to composite solid leads us to the notion of the data structure as
knowledge of how to break a shape down into a set of simpler shapes. This is in fact, the purpose of the TopoDS
package.

The model of a shape is a shareable data structure because it can be used by other shapes. (An edge can be used
by more than one face of a solid). A shareable data structure is handled by reference. When a simple reference is
insufficient, two pieces of information are added: an orientation and a local coordinate reference.

• An orientation tells how the referenced shape is used in a boundary (Orientation from TopAbs).

• A local reference coordinate (Location from TopLoc) allows referencing a shape at a position different from
that of its definition.

The TopoDS_TShape class is the root of all shape descriptions. It contains a list of shapes. Classes inheriting
TopoDS_TShape can carry the description of a geometric domain if necessary (for example, a geometric point
associated with a TVertex). A TopoDS_TShape is a description of a shape in its definition frame of reference. This
class is manipulated by reference.

The TopoDS_Shape class describes a reference to a shape. It contains a reference to an underlying abstract
shape, an orientation,and a local reference coordinate. This class is manipulated by value and thus cannot be
shared.

The class representing the underlying abstract shape is never referenced directly. The TopoDS_Shape class is
always used to refer to it.

The information specific to each shape (the geometric support) is always added by inheritance to classes deriving
from TopoDS_TShape. The following figures show the example of a shell formed from two faces connected by an
edge.

Figure 9: Structure of a shell formed from two faces

(c) Open CASCADE 2016

6.3 Manipulating shapes and sub-shapes 30

Figure 10: Data structure of the above shell

In the previous diagram, the shell is described by the underlying shape TS, and the faces by TF1 and TF2. There
are seven edges from TE1 to TE7 and six vertices from TV1 to TV6.

The wire TW1 references the edges from TE1 to TE4; TW2 references from TE4 to TE7.

The vertices are referenced by the edges as follows:TE1(TV1,TV4), TE2(TV1,TV2), TE3(TV2,TV3), TE4(TV3,TV4),
TE5(TV4,TV5), TE6(T5,TV6),TE7(TV3,TV6).

Note that this data structure does not contain any back references. All references go from more complex underlying
shapes to less complex ones. The techniques used to access the information are described later. The data structure
is as compact as possible. Sub-objects can be shared among different objects.

Two very similar objects, perhaps two versions of the same object, might share identical sub-objects. The usage of
local coordinates in the data structure allows the description of a repetitive sub-structure to be shared.

The compact data structure avoids the loss of information associated with copy operations which are usually used
in creating a new version of an object or when applying a coordinate change.

The following figure shows a data structure containing two versions of a solid. The second version presents a series
of identical holes bored at different positions. The data structure is compact and yet keeps all information on the
sub-elements.

The three references from TSh2 to the underlying face TFcyl have associated local coordinate systems, which
correspond to the successive positions of the hole.

(c) Open CASCADE 2016

6.3 Manipulating shapes and sub-shapes 31

Figure 11: Data structure containing two versions of a solid

Classes inheriting TopoDS_Shape

TopoDS is based on class TopoDS_Shape and the class defining its underlying shape. This has certain advantages,
but the major drawback is that these classes are too general. Different shapes they could represent do not type
them (Vertex, Edge, etc.) hence it is impossible to introduce checks to avoid incoherences such as inserting a face
in an edge.

TopoDS package offers two sets of classes, one set inheriting the underlying shape with neither orientation nor
location and the other inheriting TopoDS_Shape, which represent the standard topological shapes enumerated in
TopAbs package.

The following classes inherit Shape : TopoDS_Vertex, TopoDS_Edge, TopoDS_Wire, TopoDS_Face, TopoDS_-
Shell, TopoDS_Solid,TopoDS_CompSolid, and TopoDS_Compound. In spite of the similarity of names with those
inheriting from TopoDS_TShape there is a profound difference in the way they are used.

TopoDS_Shape class and the classes, which inherit from it, are the natural means to manipulate topological objects.
TopoDS_TShape classes are hidden. TopoDS_TShape describes a class in its original local coordinate system
without orientation. TopoDS_Shape is a reference to TopoDS_TShape with an orientation and a local reference.

TopoDS_TShape class is deferred; TopoDS_Shape class is not. Using TopoDS_Shape class allows manipulation
of topological objects without knowing their type. It is a generic form. Purely topological algorithms often use the
TopoDS_Shape class.

TopoDS_TShape class is manipulated by reference; TopoDS_Shape class by value. A TopoDS_Shape is nothing
more than a reference enhanced with an orientation and a local coordinate. The sharing of TopoDS_Shapes is
meaningless. What is important is the sharing of the underlying TopoDS_TShapes. Assignment or passage in

(c) Open CASCADE 2016

6.4 Exploration of Topological Data Structures 32

argument does not copy the data structure: this only creates new TopoDS_Shapes which refer to the same TopoD-
S_TShape.

Although classes inheriting TopoDS_TShape are used for adding extra information, extra fields should not be added
in a class inheriting from TopoDS_Shape. Classes inheriting from TopoDS_Shape serve only to specialize a refer-
ence in order to benefit from static type control (carried out by the compiler). For example, a routine that receives
a TopoDS_Face in argument is more precise for the compiler than the one, which receives a TopoDS_Shape. It is
pointless to derive other classes than those found inTopoDS. All references to a topological data structure are made
with the Shape class and its inheritors defined in TopoDS.

There are no constructors for the classes inheriting from the TopoDS_Shape class, otherwise the type control would
disappear through implicit casting (a characteristic of C++). The TopoDS package provides package methods for
casting an object of the TopoDS_Shape class in one of these sub-classes, with type verification.

The following example shows a routine receiving an argument of the TopoDS_Shape type, then putting it into a
variable V if it is a vertex or calling the method ProcessEdge if it is an edge.

#include <TopoDS_Vertex.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>

void ProcessEdge(const TopoDS_Edge&);

void Process(const TopoDS_Shape& aShape) {
if (aShape.Shapetype() == TopAbs_VERTEX) {
TopoDS_Vertex V;
V = TopoDS::Vertex(aShape); // Also correct
TopoDS_Vertex V2 = aShape; // Rejected by the compiler
TopoDS_Vertex V3 = TopoDS::Vertex(aShape); // Correct

}
else if (aShape.ShapeType() == TopAbs_EDGE){
ProcessEdge(aShape) ; // This is rejected
ProcessEdge(TopoDS::Edge(aShape)) ; // Correct

}
else {
cout <<"Neither a vertex nor an edge ?";
ProcessEdge(TopoDS::Edge(aShape)) ;
// OK for compiler but an exception will be raised at run-time

}
}

6.4 Exploration of Topological Data Structures

The TopExp package provides tools for exploring the data structure described with the TopoDS package. Exploring
a topological structure means finding all sub-objects of a given type, for example, finding all the faces of a solid.

The TopExp package provides the class TopExp_Explorer to find all sub-objects of a given type. An explorer is built
with:

• The shape to be explored.

• The type of shapes to be found e.g. VERTEX, EDGE with the exception of SHAPE, which is not allowed.

• The type of Shapes to avoid. e.g. SHELL, EDGE. By default, this type is SHAPE. This default value means
that there is no restriction on the exploration.

The Explorer visits the whole structure in order to find the shapes of the requested type not contained in the type to
avoid. The example below shows how to find all faces in the shape S:

void test() {
TopoDS_Shape S;
TopExp_Explorer Ex;
for (Ex.Init(S,TopAbs_FACE); Ex.More(); Ex.Next()) {
ProcessFace(Ex.Current());

}
}

Find all the vertices which are not in an edge

(c) Open CASCADE 2016

6.4 Exploration of Topological Data Structures 33

for (Ex.Init(S,TopAbs_VERTEX,TopAbs_EDGE); ...)

Find all the faces in a SHELL, then all the faces not in a SHELL:

void test() {
TopExp_Explorer Ex1, Ex2;
TopoDS_Shape S;
for (Ex1.Init(S,TopAbs_SHELL);Ex1.More(); Ex1.Next()){
// visit all shells
for (Ex2.Init(Ex1.Current(),TopAbs_FACE);Ex2.More();

Ex2.Next()){
//visit all the faces of the current shell
ProcessFaceinAshell(Ex2.Current());
...

}
}
for(Ex1.Init(S,TopAbs_FACE,TopAbs_SHELL);Ex1.More(); Ex1.Next()){
// visit all faces not ina shell.
ProcessFace(Ex1.Current());

}
}

The Explorer presumes that objects contain only objects of an equal or inferior type. For example, if searching for
faces it does not look at wires, edges, or vertices to see if they contain faces.

The MapShapes method from TopExp package allows filling a Map. An exploration using the Explorer class can visit
an object more than once if it is referenced more than once. For example, an edge of a solid is generally referenced
by two faces. To process objects only once, they have to be placed in a Map.

Example

void TopExp::MapShapes (const TopoDS_Shape& S,
const TopAbs_ShapeEnum T,
TopTools_IndexedMapOfShape& M)

{
TopExp_Explorer Ex(S,T);
while (Ex.More()) {
M.Add(Ex.Current());
Ex.Next();

}
}

In the following example all faces and all edges of an object are drawn in accordance with the following rules:

• The faces are represented by a network of NbIso iso-parametric lines with FaceIsoColor color.

• The edges are drawn in a color, which indicates the number of faces sharing the edge:

– FreeEdgeColor for edges, which do not belong to a face (i.e. wireframe element).

– BorderEdgeColor for an edge belonging to a single face.

– SharedEdgeColor for an edge belonging to more than one face.

• The methods DrawEdge and DrawFaceIso are also available to display individual edges and faces.

The following steps are performed:

1. Storing the edges in a map and create in parallel an array of integers to count the number of faces sharing
the edge. This array is initialized to zero.

2. Exploring the faces. Each face is drawn.

3. Exploring the edges and for each of them increment the counter of faces in the array.

4. From the Map of edges, drawing each edge with the color corresponding to the number of faces.

void DrawShape (const TopoDS_Shape& aShape,
const Standard_Integer nbIsos,
const Color FaceIsocolor,
const Color FreeEdgeColor,
const Color BorderEdgeColor,

(c) Open CASCADE 2016

6.5 Lists and Maps of Shapes 34

const Color SharedEdgeColor)
{

// Store the edges in aMap.
TopTools_IndexedMapOfShape edgemap;
TopExp::MapShapes(aShape,TopAbs_EDGE,edgeMap);
// Create an array set to zero.
TColStd_Array1OfInteger faceCount(1,edgeMap.Extent());
faceCount.Init (0);
// Explore the faces.
TopExp_Explorer expFace(aShape,TopAbs_FACE);
while (expFace.More()) {
//Draw the current face.
DrawFaceIsos(TopoDS::Face(expFace.Current()),nbIsos,FaceIsoColor);
// Explore the edges ofthe face.
TopExp_Explorer expEdge(expFace.Current(),TopAbs_EDGE);
while (expEdge.More()) {

//Increment the face count for this edge.
faceCount(edgemap.FindIndex(expEdge.Current()))++;
expEdge.Next();

}
expFace.Next();

}
//Draw the edges of theMap
Standard_Integer i;
for (i=1;i<=edgemap.Extent();i++) {
switch (faceCount(i)) {

case 0 :
DrawEdge(TopoDS::Edge(edgemap(i)),FreeEdgeColor);
break;
case 1 :
DrawEdge(TopoDS::Edge(edgemap(i)),BorderEdgeColor);
break;
default :
DrawEdge(TopoDS::Edge(edgemap(i)),SharedEdgeColor);
break;

}
}

}

6.5 Lists and Maps of Shapes

TopTools package contains tools for exploiting the TopoDS data structure. It is an instantiation of the tools from
TCollection package with the Shape classes of TopoDS.

• TopTools_Array1OfShape, HArray1OfShape – instantiation of the TCollection_Array1 and TCollection_H-
Array1 with TopoDS_Shape.

• TopTools_SequenceOfShape – instantiation of the TCollection_Sequence with TopoDS_Shape.

• TopTools_MapOfShape - instantiation of the TCollection_Map. Allows the construction of sets of shapes.

• TopTools_IndexedMapOfShape - instantiation of the TCollection_IndexedMap. Allows the construction of
tables of shapes and other data structures.

With a TopTools_Map, a set of references to Shapes can be kept without duplication. The following example counts
the size of a data structure as a number of TShapes.

#include <TopoDS_Iterator.hxx>
Standard_Integer Size(const TopoDS_Shape& aShape)
{

// This is a recursive method.
// The size of a shape is1 + the sizes of the subshapes.
TopoDS_Iterator It;
Standard_Integer size = 1;
for (It.Initialize(aShape);It.More();It.Next()) {
size += Size(It.Value());

}
return size;

}

This program is incorrect if there is sharing in the data structure.

Thus for a contour of four edges it should count 1 wire + 4 edges +4 vertices with the result 9, but as the vertices
are each shared by two edges this program will return 13. One solution is to put all the Shapes in a Map so as to
avoid counting them twice, as in the following example:

(c) Open CASCADE 2016

6.5 Lists and Maps of Shapes 35

#include <TopoDS_Iterator.hxx>
#include <TopTools_MapOfShape.hxx>

void MapShapes(const TopoDS_Shape& aShape,
TopTools_MapOfShape& aMap)
{

//This is a recursive auxiliary method. It stores all subShapes of aShape in a Map.
if (aMap.Add(aShape)) {
//Add returns True if aShape was not already in the Map.
TopoDS_Iterator It;
for (It.Initialize(aShape);It.More();It.Next()){

MapShapes(It.Value(),aMap);
}

}
}

Standard_Integer Size(const TopoDS_Shape& aShape)
{

// Store Shapes in a Mapand return the size.
TopTools_MapOfShape M;
MapShapes(aShape,M);
return M.Extent();

}

Note For more details about Maps please, refer to the TCollection documentation. (Foundation Classes Reference
Manual)

The following example is more ambitious and writes a program which copies a data structure using an IndexedMap.
The copy is an identical structure but it shares nothing with the original. The principal algorithm is as follows:

• All Shapes in the structure are put into an IndexedMap.

• A table of Shapes is created in parallel with the map to receive the copies.

• The structure is copied using the auxiliary recursive function,which copies from the map to the array.

#include <TopoDS_Shape.hxx>
#include <TopoDS_Iterator.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_Array1OfShape.hxx>
#include <TopoDS_Location.hxx>

TopoDS_Shape Copy(const TopoDS_Shape& aShape,
const TopoDS_Builder& aBuilder)
{

// Copies the wholestructure of aShape using aBuilder.
// Stores all thesub-Shapes in an IndexedMap.
TopTools_IndexedMapOfShape theMap;
TopoDS_Iterator It;
Standard_Integer i;
TopoDS_Shape S;
TopLoc_Location Identity;
S = aShape;
S.Location(Identity);
S.Orientation(TopAbs_FORWARD);
theMap.Add(S);
for (i=1; i<= theMap.Extent(); i++) {
for(It.Initialize(theMap(i)); It.More(); It.Next()) {

S=It.Value();
S.Location(Identity);
S.Orientation(TopAbs_FORWARD);
theMap.Add(S);

}
}

}

In the above example, the index i is that of the first object not treated in the Map. When i reaches the same size
as the Map this means that everything has been treated. The treatment consists in inserting in the Map all the
sub-objects, if they are not yet in the Map, they are inserted with an index greater than i.

Note that the objects are inserted with a local reference set to the identity and a FORWARD orientation. Only the
underlying TShape is of great interest.

//Create an array to store the copies.
TopTools_Array1OfShapetheCopies(1,theMap.Extent());

// Use a recursivefunction to copy the first element.
void AuxiliaryCopy (Standard_Integer,

(c) Open CASCADE 2016

6.5 Lists and Maps of Shapes 36

const TopTools_IndexedMapOfShape &,
TopTools_Array1OfShape &,
const TopoDS_Builder&);

AuxiliaryCopy(1,theMap,theCopies,aBuilder);

// Get the result with thecorrect local reference and orientation.
S = theCopies(1);
S.Location(aShape.Location());
S.Orientation(aShape.Orientation());
return S;

Below is the auxiliary function, which copies the element of rank i from the map to the table. This method checks if
the object has been copied; if not copied, then an empty copy is performed into the table and the copies of all the
sub-elements are inserted by finding their rank in the map.

void AuxiliaryCopy(Standard_Integer index,
const TopTools_IndexedMapOfShapes& sources,
TopTools_Array1OfShape& copies,
const TopoDS_Builder& aBuilder)
{

//If the copy is a null Shape the copy is not done.
if (copies(index).IsNull()) {
copies(index) =sources(index).EmptyCopied();
//Insert copies of the sub-shapes.
TopoDS_Iterator It;
TopoDS_Shape S;
TopLoc_Location Identity;
for(It.Initialize(sources(index)),It.More(), It.Next ()) {

S = It.Value();
S.Location(Identity);
S.Orientation(TopAbs_FORWARD);
AuxiliaryCopy(sources.FindIndex(S),sources,copies,aBuilder);
S.Location(It.Value().Location());S.Orientation(It.Value().Orientation()); aBuilder.Add(copies(index)
,S);

}
}

}

6.5.1 Wire Explorer

BRepTools_WireExplorer class can access edges of a wire in their order of connection.

For example, in the wire in the image we want to recuperate the edges in the order {e1, e2, e3,e4, e5} :

Figure 12: A wire composed of 6 edges.

TopExp_Explorer, however, recuperates the lines in any order.

(c) Open CASCADE 2016

6.5 Lists and Maps of Shapes 37

TopoDS_Wire W = ...;
BRepTools_WireExplorer Ex;
for(Ex.Init(W); Ex.More(); Ex.Next()) {

ProcessTheCurrentEdge(Ex.Current());
ProcessTheVertexConnectingTheCurrentEdgeToThePrevious
One(Ex.CurrentVertex());

}

(c) Open CASCADE 2016

	Introduction
	Geometry Utilities
	Interpolations and Approximations
	Analysis of a set of points
	Basic Interpolation and Approximation
	Advanced Approximation

	Direct Construction
	Simple geometric entities
	Geometric entities manipulated by handle

	Conversion to and from BSplines
	Points on Curves
	Extrema

	2D Geometry
	3D Geometry
	Properties of Shapes
	Local Properties of Shapes
	Local Properties of Curves and Surfaces
	Global Properties of Shapes
	Adaptors for Curves and Surfaces

	Topology
	Shape Location
	Naming shapes, sub-shapes, their orientation and state
	Topological types
	Orientation
	State

	Manipulating shapes and sub-shapes
	Exploration of Topological Data Structures
	Lists and Maps of Shapes
	Wire Explorer

