// f,ASCADE

TECHNOLOGY

Open CASCADE Technology
7.0.0

Extended Data Exchange (XDE)

April 4, 2016

CONTENTS 1

Contents
1 Introduction. e 3
1.1 BasiCterms e 4
1.2 XDE Organization o e e 4
1.3 Assemblies e 4
1.4 Validation Properties e 6
1.5 Names o e e 7
1.6 Colorsand Layers e 8
2 Workingwith XDE 10
21 Gettingstarted e 10
2.1.1 Environmentvariables 10
21.2 GeneralCheck e 10
2.1.3 Get an Application or an Initialized Document oL 10
2.2 Shapesand Assemblies 11
2.2.1 Initialize an XDE Document (Shapes) o o 11
222 GetaNodeconsideredasanAssembly 11
2.2.3 Updating the Assembly after Filling or Editing 11
2.2.4 Adding or Setting Top Level Shapes 11
225 Settingagiven Shapeatagivenlabel 12
2.2.6 Gettinga Shape fromalabel 12
227 GettingalabelfromaShape 12
2.2.8 OtherQueriesonalabel 12
2.2.9 Instances and References for Components o 14
2.3 Editing Shapes 14
2.4 Managementof Sub-Shapes 14
25 Properties e 15
251 Name e 15
252 Centroid e e e 16
253 Area 16
254 Volume L e e 16
2.6 ColorsandlLayers e e e e 17
2.6.1 nitialization L 18
2.6.2 AddingaColor e 18
2.6.3 QueriesonColors e 19
2.6.4 EditingColors e e 19
2.7 Reading and Writing STEP or IGES 20
271 Readinga STEPfile e 20
272 Writinga STEPfile 20

(c) Open CASCADE 2016

CONTENTS 2

273 ReadinganlIGESFile. e 21
274 WritinganIGESFile e 21
2.8 Usingan XDE Document e 21
2.8.1 XDE Data inside an Application Documento 21

(c) Open CASCADE 2016

1 Introduction 3

1 Introduction

This manual explains how to use the Extended Data Exchange (XDE). It provides basic documentation on setting
up and using XDE. For advanced information on XDE and its applications, see our E-1learning & Training
offerings.

The Extended Data Exchange (XDE) module allows extending the scope of exchange by translating additional data
attached to geometric BREP data, thereby improving the interoperability with external software.

Data types such as colors, layers, assembly descriptions and validation properties (i.e. center of gravity, etc.) are
supported. These data are stored together with shapes in an XCAF document. It is also possible to add a new
types of data taking the existing tools as prototypes.

Finally, the XDE provides reader and writer tools for reading and writing the data supported by XCAF to and from
IGES and STEP files.

Figure 1: Shape imported using XDE

The XDE component requires Shape Healing toolkit for operation.

(c) Open CASCADE 2016

1.1 Basic terms 4

1.1 Basic terms
For better understanding of XDE, certain key terms are defined:

» Shape - a standalone shape, which does not belong to the assembly structure.
+ Instance — a replication of another shape with a location that can be the same location or a different one.

» Assembly — a construction that is either a root or a sub-assembly.

1.2 XDE Organization

The basis of XDE, called XCAF, is a framework based on OCAF (Open CASCADE Technology Application Frame-
work) and is intended to be used with assemblies and with various kinds of attached data (attributes). Attributes can
be Individual attributes for a shape, specifying some characteristics of a shape, or they can be Grouping attributes,
specifying that a shape belongs to a given group whose definition is specified apart from the shapes.

XDE works in an OCAF document with a specific organization defined in a dedicated XCAF module. This organiza-
tion is used by various functions of XDE to exchange standardized data other than shapes and geometry.

The Assembly Structure and attributes assigned to shapes are stored in the OCAF tree. It is possible to obtain
TopoDS representation for each level of the assembly in the form of TopoDS_Compound or TopoDS_Shape using
the API.

Basic elements used by XDE are introduced in the XCAF sub-module by the package XCAFDoc. These elements
consist in descriptions of commonly used data structures (apart from the shapes themselves) in normalized data
exchanges. They are not attached to specific applications and do not bring specific semantics, but are structured
according to the use and needs of data exchanges. The Document used by XDE usually starts as a TDocStd_-
Document.

1.3 Assemblies

XDE supports assemblies by separating shape definitions and their locations. Shapes are simple OCAF objects
without a location definition. An assembly consists of several components. Each of these components references
one and the same specified shape with different locations. All this provides an increased flexibility in working on
multi-level assemblies.

For example, a mechanical assembly can be defined as follows:

(c) Open CASCADE 2016

1.3 Assemblies

B 0:

1
Attributelist
0:1:1 Shapes
Attributel ist
0:1:1:1 AS1
Attributelist
O:1:121:1 PLATE_1
1 0:1:1:21:2 L-BRACKET-ASSENBLY_1
0:1:121:3 L-BRACKET-ASSENBLY _2
“10:1:1:1:4 ROD-ASSENBLY_1

7 NIT
19 ROD

Figure 2: Assembly Description

Figure 3: Assembly View

XDE defines the specific organization of the assembly content. Shapes are stored on sub-labels of label 0:1:1.
There can be one or more roots (called free shapes) whether they are true trees or simple shapes. A shape can be
considered to be an Assembly (such as AS1 under 0:1:1:1 in Figure1) if it is defined with Components (sub-shapes,

located or not).

XCAFDoc_ShapeTool is a tool that allows managing the Shape section of the XCAF document. This tool is imple-
mented as an attribute and located at the root label of the shape section.

(c) Open CASCADE 2016

1.4 Validation Properties 6

1.4 Validation Properties

Validation properties are geometric characteristics of Shapes (volume, centroid, surface area) written to STEP
files by the sending system. These characteristics are read by the receiving system to validate the quality of the
translation. This is done by comparing the values computed by the original system with the same values computed
by the receiving system on the resulting model.

Advanced Data Exchange supports both reading and writing of validation properties, and provides a tool to check
them.

Figure 4: Validation Property Descriptions

Check logs contain deviations of computed values from the values stored in a STEP file. A typical example appears
as follows:

0:1:1:1 312.6 (0%) | -181.7 (0%) | 0.00 0.00 0.00 "S1"

0:1:1:2 -4.6 (0%) -191.2 (0%) | -0.00 0.00 -0.00 "MAINBOD-
v

0113 2.3 (0%) -52.5 (0%) -0.00 0.00 0.00 "MAIN_BO-
DY_BACK"

0:1:1:4 2.3 (0%) -51.6 (0%) 0.00 0.00 -0.00 "MAIN_BO-
DY_FRONT"

(c) Open CASCADE 2016

1.5 Names 7

0:1:15 2.0 (0%) 10.0 (0%) -0.00 0.00 -0.00 "HEAD"
0:1:1:6 0.4 (0%) 0.0 (0%) 0.00 -0.00 -0.00 "HEAD_FR-
ONT"
0:1:1:7 0.4 (0%) 0.0 (0%) 0.00 -0.00 -0.00 "HEAD_BA-
CK"
0:1:1:8 -320.6 (0%) | 10.9 (0%) -0.00 0.00 0.00 "TAIL"
0:1:1:9 0.0 (0%) 0.0 (0%) -0.00 -0.00 0.00 "TAIL_MID-
DLE"
0:1:1:10 -186.2 (0%) | 4.8 (0%) -0.00 0.00 -0.00 "TAIL_TUR-
BINE"
0:1:1:11 0.3 (0%) -0.0 (0%) -0.00 -0.00 0.00 "FOOT"
0:1:1:12 0.0 (0%) -0.0 (0%) 0.00 -0.00 -0.00 "FOOT_FR-
ONT"
0:1:1:13 0.0 (0%) 0.0 (0%) -0.00 0.00 0.00 "FOOT_BA-
CK"

In our example, it can be seen that no errors were detected for either area, volume or positioning data.

1.5 Names

XDE supports reading and writing the names of shapes to and from IGES and STEP file formats. This functionality
can be switched off if you do not need this type of data, thereby reducing the size of the document.

(c) Open CASCADE 2016

1.6 Colors and Layers 8

nut

side
clamp_

clamp_bottom

biolt

wiotkbench

clamp_

clamp_bottom

biolt

Figure 5: Instance Names

1.6 Colors and Layers

XDE can read and write colors and layers assigned to shapes or their subparts (down to the level of faces and
edges) to and from both IGES and STEP formats. Three types of colors are defined in the enumeration XCAFDoc-
_ColorType:

« generic color (XCAFDoc_ColorGen)
« surface color (XCAFDoc_ColorSurf)
« curve color (XCAFDoc_ColorCurv)

(c) Open CASCADE 2016

1.6 Colors and Layers

Figure 6: Colors and Layers

(c) Open CASCADE 2016

2 Working with XDE 10

2 Working with XDE

2.1 Getting started

As explained in the last chapter, XDE uses TDocStd Documents as a starting point. The general purpose of XDE
is:

» Checking if an existing document is fit for XDE;
» Getting an application and initialized document;
« Initializing a document to fit it for XDE;

+ Adding, setting and finding data;

» Querying and managing shapes;

« Attaching properties to shapes.

The Document used by XDE usually starts as a TDocStd _Document.

2.1.1 Environment variables

To use XDE you have to set the environment variables properly. Make sure that two important environment variables
are set as follows:

* CSF_PluginDefaults points to sources of %CASROOT%/src/XCAFResources ($CASROOT/src/XCAF-
Resources).

* CSF_XCAFDefaults points to sources of %CASROOT%/src/XCAFResources ($CASROOT/src/XCAF-
Resources).

2.1.2 General Check

Before working with shapes, properties, and other types of information, the global organization of an XDE Document
can be queried or completed to determine if an existing Document is actually structured for use with XDE.

To find out if an existing TDocStd_Document is suitable for XDE, use:

Handle (TDocStd_Document) doc...
if (XCAFDoc_DocumentTool::IsXCAFDocument (doc)) { .. yes .. }

If the Document is suitable for XDE, you can perform operations and queries explained in this guide. However, if a
Document is not fully structured for XDE, it must be initialized.

2.1.3 Get an Application or an Initialized Document

If you want to retrieve an existing application or an existing document (known to be correctly structured for XDE),
use:

Handle (TDocStd_Document) aDoc;
Handle (XCAFApp_Application) anApp = XCAFApp_Application::GetApplication();
anApp->NewDocument (; MDTV-XCAF; , aDoc) ;

(c) Open CASCADE 2016

2.2 Shapes and Assemblies 11

2.2 Shapes and Assemblies
2.2.1 Initialize an XDE Document (Shapes)

An XDE Document begins with a TDocStd_Document. Assuming you have a TDocStd_Document already created,
you can ensure that it is correctly structured for XDE by initializing the XDE structure as follows:

Handle (TDocStd_Document) doc...

Handle (XCAFDoc_ShapeTool) myAssembly =
XCAFDoc_DocumentTool: :ShapeTool (Doc->Main());
TDF_Label alabel = myAssembly->NewShape ()

Note that the method XCAFDoc_DocumentTool::ShapeTool returns the XCAFDoc _ShapeTool. The first time this
method is used, it creates the XCAFDoc_ShapeTool. In our example, a handle is used for the TDocStd _Document.

2.2.2 Get a Node considered as an Assembly

To get a node considered as an Assembly from an XDE structure, you can use the Label of the node. Assuming
that you have a properly initialized TDocStd_Document, use:

Handle (TDocStd_Document) doc...
Handle (XCAFDoc_ShapeTool) myAssembly = XCAFDoc_DocumentTool::ShapeTool (aLabel);

In the previous example, you can also get the Main Item of an XDE document, which records the root shape
representation (as a Compound if it is an Assembly) by using ShapeTool(Doc->Main()) instead of ShapeTool(a-
Label).

You can then query or edit this Assembly node, the Main Item or another one (myAssembly in our examples).

Note that for the examples in the rest of this guide, myAssembly is always presumed to be accessed this way, so
this information will not be repeated.

2.2.3 Updating the Assembly after Filling or Editing

Some actions in this chapter affect the content of the document, considered as an Assembly. As a result, you will
sometimes need to update various representations (including the compounds).

To update the representations, use:

myAssembly->UpdateAssembly (aLabel) ;

Since this call is always used by the editing functions, you need not apply it for such functions. However, you will
need this call if special edits, not using XCAF functions, are used on the document.

2.2.4 Adding or Setting Top Level Shapes

Shapes can be added as top-level shapes. Top level means that they can be added to an upper level assembly or
added on their own at the highest level as a component or referred by a located instance. Therefore two types of
top-level shapes can be added:

+ shapes with upper level references

+ free shapes (that correspond to roots) without any upper reference

Note that several top-level shapes can be added to the same component.

A shape to be added can be defined as a compound (if required), with the following interpretations:

« If the Shape is a compound, according to the user choice, it may or may not be interpreted as representing
an Assembly. If it is an Assembly, each of its sub-shapes defines a sub-label.

(c) Open CASCADE 2016

2.2 Shapes and Assemblies 12

« If the Shape is not a compound, it is taken as a whole, without breaking it down.

To break down a Compound in the assembly structure, use:

Standard_Boolean makeAssembly;

// True to interpret a Compound as an Assembly,

// False to take it as a whole

alLabel = myAssembly->AddShape (aShape, makeAssembly);

Each node of the assembly therefore refers to its sub-shapes.

Concerning located instances of sub-shapes, the corresponding shapes, (without location) appear at distinct sub-
labels. They are referred to by a shape instance, which associates a location.

2.25 Setting a given Shape at a given Label
A top-level shape can be changed. In this example, no interpretation of compound is performed:

Standard_CString LabelString ...;

// identifies the Label (form ;0:i:7j...;)
TDF_Label aLabel...;

// A label must be present
myAssembly—->SetShape (aLabel, aShape);

2.2.6 Getting a Shape from a Label
To get a shape from its Label from the top-level, use:

TDF_Label alLabel...
// A label must be present
if (aLabel.IsNull()) {
// no such label : abandon
}
TopoDS_Shape aShape;
aShape = myAssembly->GetShape (alLabel) ;
(aShape.IsNull()) {
// this label is not for a Shape
}

Note that if the label corresponds to an assembly, the result is a compound.

2.2.7 Getting a Label from a Shape
To get a Label, which is attached to a Shape from the top-level, use:

Standard_Boolean findInstance = Standard_False;
// (this is default value)
alLabel = myAssembly->FindShape (aShape [, findInstance]);
it (aLabel.IsNull()) {
// no label found for this shape
}

If findInstance is True, a search is made for the shape with the same location. If it is False (default value), a search
is made among original, non-located shapes.

2.2.8 Other Queries on a Label

Various other queries can be made from a Label within the Main Item of XDE:

(c) Open CASCADE 2016

2.2 Shapes and Assemblies 13

Main Shapes
To determine if a Shape is recorded (or not), use:

(myAssembly->IsShape (alLabel)) { .. yes .. }

To determine if the shape is top-level, i.e. was added by the AddShape method, use:

(myAssembly->IsTopLevel (aLabel)) { .. yes .. }

To get a list of top-level shapes added by the AddShape method, use:

TDF_LabelSequence frshapes;
myAssembly—->GetShapes (frshapes) ;

To get all free shapes at once if the list above has only one item, use:

TopoDS_Shape result = myAssembly->GetShape (frshapes.Value(l));

If there is more than one item, you must create and fill a compound, use:

TopoDS_Compound C;
BRep_Builder B;
B.MakeCompound (C) ;

for (Standard_Integer i=1; i=frshapes.Length(); i++) {
TopoDS_Shape S = myAssembly->GetShape (frshapes.Value(i));
B.Add(C, S);

}

In our example, the result is the compound C. To determine if a shape is a free shape (no reference or super-
assembly), use:

if (myAssembly->IsFree (alLabel)) { .. yes .. }

To get a list of Free Shapes (roots), use:

TDF_LabelSequence frshapes;
myAssembly—->GetFreeShapes (frshapes) ;

To get the shapes, which use a given shape as a component, use:

TDF_LabelSequence users;
Standard_Integer nbusers = myAssembly->GetUsers (alabel,users);

The count of users is contained with nbusers. It contains 0 if there are no users.
Assembly and Components

To determine if a label is attached to the main part or to a sub-part (component), use:
1f (myAssembly->IsComponent (aLabel)) { .. yes .. }

To determine whether a label is a node of a (sub-) assembly or a simple shape, use:

1f (myAssembly->IsAssembly (aLabel)) { .. yes .. }

If the label is a node of a (sub-) assembly, you can get the count of components, use:

Standard_Boolean subchilds = Standard_False; //default
Standard_Integer nbc = myAssembly->NbComponents (aLabel [,subchilds]);

If subchilds is True, commands also consider sub-levels. By default, only level one is checked.

To get component Labels themselves, use:

Standard_Boolean subchilds = Standard_False; //default
TDF_LabelSequence comps;

Standard_Boolean isassembly = myAssembly->GetComponents
(aLabel, comps [, subchilds]);

(c) Open CASCADE 2016

2.3 Editing Shapes 14

2.2.9 Instances and References for Components
To determine if a label is a simple shape, use:

if (myAssembly->IsSimpleShape (aLabel)) { .. yes .. }

To determine if a label is a located reference to another one, use:

if (myAssembly->IsReference (alabel)) { .. yes .. }

If the label is a located reference, you can get the location, use:

TopLoc_Location loc = myAssembly->GetLocation (aLabel);

To get the label of a referenced original shape (also tests if it is a reference), use:

Standard_Boolean isref = myAssembly->GetReferredShape
(aLabel, reflLabel);

Note isref returns False if aLabel is not for a reference.

2.3 Editing Shapes

In addition to the previously described AddShape and SetShape, several shape edits are possible.

To remove a Shape, and all its sub-labels, use:

Standard_Boolean remsh = myAssembly->RemoveShape (aLabel) ;
// remsh is returned True if done

This operation will fail if the shape is neither free nor top level.

To add a Component to the Assembly, from a new shape, use:

Standard_Boolean expand = Standard_False; //default
TDF_Label alabel = myAssembly->AddComponent (aShape [,expand]);

If expand is True and aShape is a Compound, aShape is broken down to produce sub-components, one for each of
its sub-shapes.

To add a component to the assembly, from a previously recorded shape (the new component is defined by the label
of the reference shape, and its location), use:

TDF_Label reflLabel ...; // the label of reference shape
TopLoc_Location loc ...; // the desired location
TDF_Label alabel = myAssembly->AddComponent (refLabel, loc);

To remove a component from the assembly, use:

myAssembly->RemoveComponent (aLabel);

2.4 Management of Sub-Shapes
In addition to components of a (sub-)assembly, it is possible to have individual identification of some sub-shapes
inside any shape. Therefore, you can attach specific attributes such as Colors. Some additional actions can be

performed on sub-shapes that are neither top-level, nor components: To add a sub-shape to a given Label, use:

TDF_Label subLabel = myAssembly->AddSubShape (alLabel, subShape);

(c) Open CASCADE 2016

2.5 Properties

To find the Label attached to a given sub-shape, use:

TDF_Label subLabel; // new label to be computed
(myAssembly-> FindSubShape (aLabel, subShape, subLabel)) { .. yes .. }

If the sub-shape is found (yes), subLabel is filled by the correct value.

To find the top-level simple shape (not a compound whether free or not), which contains a given sub-shape, use:

TDF_Label mainLabel = myAssembly->FindMainShape (subShape) ;

Note that there should be only one shape for a valid model. In any case, the search stops on the first one found.

To get the sub-shapes of a shape, which are recorded under a label, use:

TDF_LabelSequence subs;
Standard_Boolean hassubs = myAssembly->GetSubShapes (aLabel, subs);

2.5 Properties
Some properties can be attached directly to shapes. These properties are:

* Name (standard definition from OCAF)
+ Centroid (for validation of transfer)

+ Volume (for validation of transfer)

+ Area (for validation of transfer) Some other properties can also be attached, and are also managed by distinct
tools for Colors and Layers. Colors and Layers are managed as an alternative way of organizing data (by
providing a way of identifying groups of shapes). Colors are put into a table of colors while shapes refer to

this table. There are two ways of attaching a color to a shape:

» By attaching an item from the table.

+ Adding the color directly. When the color is added directly, a search is performed in the table of contents to
determine if it contains the requested color. Once this search and initialize operation is done, the first way of

attaching a color to a shape is used.

2.5.1 Name

Name is implemented and used as a TDataStd_Name, which can be attached to any label. Before proceeding,

consider that:

* In IGES, every entity can have a name with an optional numeric part called a Subscript Label. For example,

MYCURVE is a name, and MYCURVE(60) is a name with a Subscript Label.

* In STEP, there are two levels: Part Names and Entity Names:

— Part Names are attached to ;main shapes; such as parts and assemblies. These Part Names are

specifically supported by XDE.

— Entity Names can be attached to every Geometric Entity. This option is rarely used, as it tends to
overload the exploitation of the data structure. Only some specific cases justify using this option: for
example, when the sending system can really ensure the stability of an entity name after each STEP
writing. If such stability is ensured, you can use this option to send an Identifier for external applications

using a database. Note that both IGES or STEP files handle names as pure ASCII strings.

These considerations are not specific to XDE. What is specific to data exchange is the way names are attached to

entities.

To get the name attached to a label (as a reminder using OCAF), use:

(c) Open CASCADE 2016

2.5 Properties 16

Handle (TDataStd_Name) Nj;

if ('aLabel.FindAttribute (TDataStd_Name::GetID(),N)) {
// no name is attached

}

TCollection_ExtendedString name = N->Get ();

Don'’t forget to consider Extended String as ASCII, for the exchange file.

To set a name to a label (as a reminder using OCAF), use:

TCollection_ExtendedString aName ...;
// contains the desired name for this Label (ASCII)
TDataStd_Name::Set (aLabel, aName);

2.5.2 Centroid

A Centroid is defined by a Point to fix its position. It is handled as a property, item of the class XCAFDoc_Centroid,
sub-class of TDF_Attribute. However, global methods give access to the position itself.

This notion has been introduced in STEP, together with that of Volume, and Area, as defining the Validation
Properties: this feature allows exchanging the geometries and some basic attached values, in order to perform
a synthetic checking on how they are maintained after reading and converting the exchange file. This exchange
depends on reliable exchanges of Geometry and Topology. Otherwise, these values can be considered irrelevant.

A centroid can be determined at any level of an assembly, thereby allowing a check of both individual simple shapes
and their combinations including locations.

To get a Centroid attached to a Shape, use:

gp_Pnt pos;

Handle (XCAFDoc_Centroid) C;

aLabel.FindAttribute (XCAFDoc_Centroid::GetID(), C);
if (!C.IsNull()) pos = C->Get();

To set a Centroid to a Shape, use:

gp_Pnt pos (X,Y,2);
// the position previously computed for the centroid
XCAFDoc_Centroid::Set (alabel, pos);

2.5.3 Area

An Area is defined by a Real, it corresponds to the computed Area of a Shape, provided that it contains surfaces.
It is handled as a property, item of the class XCAFDoc Area, sub-class of TDF_Attribute. This notion has been
introduced in STEP but it is usually disregarded for a Solid, as Volume is used instead. In addition, it is attached to
simple shapes, not to assemblies.

To get an area attached to a Shape, use:

Standard_Real area;

Handle (XCAFDoc_Area) A;

L.FindAttribute (XCAFDoc_Area::GetID(), A);
if ('A.IsNull()) area = A->Get ();

To set an area value to a Shape, use:
Standard_Real area ...;

// value previously computed for the area
XCAFDoc_Area::Set (alLabel, area);

2.5.4 Volume

A Volume is defined by a Real and corresponds to the computed volume of a Shape, provided that it contains solids.
It is handled as a property, an item of the class XCAFDoc_Volume, sub-class of TDF_Attribute. This notion has
been introduced in STEP. It may be attached to simple shapes or their assemblies for computing cumulated volumes
and centers of gravity.

To get a Volume attached to a Shape, use:

(c) Open CASCADE 2016

2.6 Colors and Layers 17

Standard_Real volume;

Handle (XCAFDoc_Volume) V;

L.FindAttribute (XCAFDoc_Volume::GetID(), V);
if (!V.IsNull()) volume = V->Get ();

To set a volume value to a Shape, use:

Standard_Real volume ...;
// value previously computed for the volume
XCAFDoc_Volume: :Set (alLabel, volume);

2.6 Colors and Layers

XDE can read and write colors and layers assigned to shapes or their subparts (down to level of faces and edges)
to and from both IGES and STEP formats.

Figure 7: Motor Head

In an XDE document, colors are managed by the class XCAFDoc_ColorTool. This is done with the same principles
as for ShapeTool with Shapes, and with the same capability of having a tool on the Main Label, or on any sub-label.
The Property itself is defined as an XCAFDoc_Color, sub-class of TDF_Attribute.

Colors are stored in a child of the starting document label: it is the second level (0.1.2), while Shapes are at the first
level. Each color then corresponds to a dedicated label, the property itself is a Quantity_Color, which has a name

(c) Open CASCADE 2016

2.6 Colors and Layers 18

and value for Red, Green, Blue. A Color may be attached to Surfaces (flat colors) or to Curves (wireframe colors),
or to both. A Color may be attached to a sub-shape. In such a case, the sub-shape (and its own sub-shapes) takes
its own Color as a priority.

Layers are handled using the same principles as Colors. In all operations described below you can simply replace
Color with Layer when dealing with Layers. Layers are supported by the class XCAFDoc_LayerTool.

The class of the property is XCAFDoc Layer, sub-class of TDF_Attribute while its definition is a TCollection_-
ExtendedString. Integers are generally used when dealing with Layers. The general cases are:

» IGES has LevellList as a list of Layer Numbers (not often used)

- STEP identifies a Layer (not by a Number, but by a String), to be more general.

Colors and Shapes are related to by Tree Nodes.

These definitions are common to various exchange formats, at least for STEP and IGES.

2.6.1 Initialization

To query, edit, or initialize a Document to handle Colors of XCAF, use:

Handle (XCAFDoc_ColorTool) myColors =
XCAFDoc_DocumentTool: :ColorTool (Doc—>Main ());

This call can be used at any time. The first time it is used, a relevant structure is added to the document. This
definition is used for all the following color calls and will not be repeated for these.

2.6.2 Adding a Color
There are two ways to add a color. You can:

+ add a new Color defined as Quantity_Color and then directly set it to a Shape (anonymous Color)

« define a new Property Color, add it to the list of Colors, and then set it to various shapes. When the Color is
added by its value Quantity Color, it is added only if it has not yet been recorded (same RGB values) in the
Document.

To set a Color to a Shape using a label, use:

Quantity_Color Col (red,green,blue);
XCAFDoc_ColorType ctype ..;

// can take one of these values :

// XCAFDoc_ColorGen : all types of geometries
// XCAFDoc_ColorSurf : surfaces only

// XCAFDoc_ColorCurv : curves only
myColors->SetColor (aLabel, Col, ctype);

Alternately, the Shape can be designated directly, without using its label, use:

myColors->SetColor (aShape, Col, ctype);

// Creating and Adding a Color, explicitly
Quantity_Color Col (red,green,blue);

TDF_Label ColLabel = myColors—>AddColor (Col);

Note that this Color can then be named, allowing later retrieval by its Name instead of its Value.

To set a Color, identified by its Label and already recorded, to a Shape, use:

XCAFDoc_ColorType ctype ..; // see above
(myColors—>SetColors (alLabel, ColLabel, ctype)) {.. it is done .. }

In this example, aLabel can be replaced by aShape directly.

(c) Open CASCADE 2016

2.6 Colors and Layers 19

2.6.3 Queries on Colors

Various queries can be performed on colors. However, only specific queries are included in this section, not general
queries using names.

To determine if a Color is attached to a Shape, for a given color type (ctype), use:

(myColors—>IsSet (alLabel , ctype)) {
// yes, there is one ..

}

In this example, aLabel can be replaced by aShape directly.

To get the Color attached to a Shape (for any color type), use:

Quantity_Color col;

// will receive the recorded value (if there is some)
(!'myColors—>GetColor (aLabel, col)) {

// sorry, no color ..

}

Color name can also be queried from col.StringName or col.Name. In this example, alLabel can be replaced by
aShape directly.

To get the Color attached to a Shape, with a specific color type, use:

XCAFDoc_ColorType ctype ..;

Quantity_Color col;

// will receive the recorded value (if there is some)
(!myColors->GetColor (aLabel, ctype, col)) {

// sorry, no color ..

}

To get all the Colors recorded in the Document, use:

Quantity_Color col; // to receive the values
TDF_LabelSequence ColLabels;
myColors—>GetColors (ColLabels) ;
Standard_Integer i, nbc = ColLabels.Length();

fo (i = 1; 41 = nbc; 1 ++) {
aLabel = Labels.Value(i);
1f (!'myColors->GetColor (aLabel, col)) contin 1e;

// col receives the color n0 i ..

}

To find a Color from its Value, use:

Quantity_Color Col (red,green,blue);
TDF_Label ColLabel = myColors-FindColor (Col);
(!ColLabel.IsNull()) { .. found .. }

2.6.4 Editing Colors

Besides adding colors, the following attribute edits can be made:

To unset a Color on a Shape, use:

XCAFDoc_ColorType ctype ...;
// desired type (XCAFDoc_ColorGen for all)
myColors->UnSetColor (aLabel,ctype);

To remove a Color and all the references to it (so that the related shapes will become colorless), use:

myColors—>RemoveColor (ColLabel) ;

(c) Open CASCADE 2016

2.7 Reading and Writing STEP or IGES 20

2.7 Reading and Writing STEP or IGES

Note that saving and restoring the document itself are standard OCAF operations. As the various previously de-
scribed definitions enter into this frame, they will not be explained any further. The same can be said for Viewing:
presentations can be defined from Shapes and Colors.

There are several important points to consider:

» Previously defined Readers and Writers for dealing with Shapes only, whether Standard or Advanced, re-
main unchanged in their form and in their dependencies. In addition, functions other than mapping are also
unchanged.

« XDE provides mapping with data other than Shapes. Names, Colors, Layers, Validation Properties (Centroid,
Volume, Area), and Assembly Structure are hierarchic with rigid motion.

« XDE mapping is relevant for use within the Advanced level of Data Exchanges, rather than Standard ones,
because a higher level of information is better suited to a higher quality of shapes. In addition, this allows to
avoid the multiplicity of combinations between various options. Note that this choice is not one of architecture
but of practical usage and packaging.

» Reader and Writer classes for XDE are generally used like those for Shapes. However, their use is adapted
to manage a Document rather than a Shape.

The packages to manage this are IGESCAFControl for IGES, and STEPCAFControl for STEP.

2.7.1 Reading a STEP file
To read a STEP file by itself, use:

STEPCAFControl_Reader reader;

IFSelect_ReturnStatus readstat = reader.ReadFile(filename);

// The various ways of reading a file are available here too :
// to read it by the reader, to take it from a WorkSession ...
Handle (TDocStd_Document) doc...

// the document referred to is already defined and

// properly initialized.

// Now, the transfer itself

if (!'reader.Transfer (doc)) {
cout;Cannot read any relevant data from the STEP file;endl;
// abandon ..

}
// Here, the Document has been filled from a STEP file,
// it is ready to use

In addition, the reader provides methods that are applicable to document transfers and for directly querying of the
data produced.

2.7.2 Writing a STEP file

To write a STEP file by itself, use:

STEPControl_StepModelType mode =

STEPControl_AsIs;

// Asis is the recommended value, others are available

// Firstly, perform the conversion to STEP entities

STEPCAFControl_Writer writer;

// (the user can work with an already prepared WorkSession or create a //new one)
Standard_Boolean scratch = Standard_False;

STEPCAFControl_Writer writer (WS, scratch);

// Translating document (conversion) to STEP

if (! writer.Transfer (Doc, mode)) {
cout; The document cannot be translated or gives no result;endl;
// abandon ..

}
// Writing the File
IFSelect_ReturnStatus stat = writer.Write(file-name);

(c) Open CASCADE 2016

2.8 Using an XDE Document 21

2.7.3 Reading an IGES File

Use the same procedure as for a STEP file but with IGESCAFControl instead of STEPCAFControl.

2.7.4 Writing an IGES File

Use the same procedure as for a STEP file but with IGESCAFControl instead of STEPCAFControl.

2.8 Using an XDE Document
There are several ways of exploiting XDE data from an application, you can:

1. Get the data relevant for the application by mapping XDE/Appli, then discard the XDE data once it has been
used.

2. Create a reference from the Application Document to the XDE Document, to have its data available as external
data.

3. Embed XDE data inside the Application Document (see the following section for details).

4. Directly exploit XDE data such as when using file checkers.

2.8.1 XDE Data inside an Application Document
To have XCAF data elsewhere than under label 0.1, you use the DocLabel of XDE. The method DocLabel from
XCAFDoc_DocumentTool determines the relevant Label for XCAF. However, note that the default is 0.1.

In addition, as XDE data is defined and managed in a modular way, you can consider exclusively Assembly Struc-
ture, only Colors, and so on.

As XDE provides an extension of the data structure, for relevant data in standardized exchanges, note the following:

» This data structure is fitted for data exchange, rather than for use by the final application.

» The provided definitions are general, for common use and therefore do not bring strongly specific semantics.
As a result, if an application works on Assemblies, on Colors or Layers, on Validation Properties (as defined in
STEP), it can rely on all or a part of the XDE definitions, and include them in its own data structure.

In addition, if an application has a data structure far from these notions, it can get data (such as Colors and Names
on Shapes) according to its needs, but without having to consider the whole.

(c) Open CASCADE 2016

	Introduction
	Basic terms
	XDE Organization
	Assemblies
	Validation Properties
	Names
	Colors and Layers

	Working with XDE
	Getting started
	Environment variables
	General Check
	Get an Application or an Initialized Document

	Shapes and Assemblies
	Initialize an XDE Document (Shapes)
	Get a Node considered as an Assembly
	Updating the Assembly after Filling or Editing
	Adding or Setting Top Level Shapes
	Setting a given Shape at a given Label
	Getting a Shape from a Label
	Getting a Label from a Shape
	Other Queries on a Label
	Instances and References for Components

	Editing Shapes
	Management of Sub-Shapes
	Properties
	Name
	Centroid
	Area
	Volume

	Colors and Layers
	Initialization
	Adding a Color
	Queries on Colors
	Editing Colors

	Reading and Writing STEP or IGES
	Reading a STEP file
	Writing a STEP file
	Reading an IGES File
	Writing an IGES File

	Using an XDE Document
	XDE Data inside an Application Document

