
rev1.0

AMD APP SDK

OpenCL Optimization Guide

A u g u s t  2 0 1 5





iii
Copyright © 2015 Advanced Micro Devices, Inc. All rights reserved.  

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, 
AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, 
the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows 
Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic-
tions. Other names are for informational purposes only and may be trademarks of their 
respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by 
permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices, 
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the 
accuracy or completeness of the contents of this publication and reserves the right to 
make changes to specifications and product descriptions at any time without notice. The 
information contained herein may be of a preliminary or advance nature and is subject to 
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth 
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, 
and disclaims any express or implied warranty, relating to its products including, but not 
limited to, the implied warranty of merchantability, fitness for a particular purpose, or 
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications 
intended to support or sustain life, or in any other application in which the failure of AMD’s 
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to 
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

For AMD APP SDK:

URL: developer.amd.com/amdappsdk

Developing: developer.amd.com/

http://www.amd.com/
developer.amd.com/amdappsdk
http://developer.amd.com/


iv
 



A M D  A P P  S D K

Preface v
Copyright © 2015 Advanced Micro Devices, Inc. All rights reserved.  

Preface

About This Document

This document provides useful performance tips and optimization guidelines for 
programmers who want to use AMD APP SDK to accelerate their applications.

Audience

This document is intended for programmers. It assumes prior experience in 
writing code for CPUs and an understanding of work-items. A basic 
understanding of GPU architectures is useful. It further assumes an 
understanding of chapters 1, 2, and 3 of the OpenCL Specification (for the latest 
version, see http://www.khronos.org/registry/cl/ ).

Organization

Chapter 1 is a discussion of general performance and optimization 
considerations when programming for AMD devices and the usage of the AMD 
CodeXL GPU Profiler and AMD CodeXL Static Kernel Analyzer tools. Chapter 2 
details performance and optimization considerations for GCN devices and 
specifically for Southern Island devices. Chapter 3 details performance and 
optimization devices for Evergreen and Northern Islands devices.The last section 
of this book is an index.

Related Documents

• The OpenCL Specification, Version 1.1, Published by Khronos OpenCL 
Working Group, Aaftab Munshi (ed.), 2010.

• The OpenCL Specification, Version 2.0, Published by Khronos OpenCL 
Working Group, Aaftab Munshi (ed.), 2013.

• AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA, 
est. pub. date 2007. This document includes the RV670 GPU instruction 
details.

• ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

• Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language, 
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.
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Chapter 1
OpenCL Performance and 
Optimization

This chapter discusses performance and optimization when programming for 
AMD heterogeneous compute GPU compute devices, as well as CPUs and 
multiple devices. Details specific to the GCN family (Southern Islands, Sea 
Islands, and Volcanic Islands series) of GPUs are at the end of the chapter.

1.1 AMD CodeXL 

AMD’s CodeXL is an OpenCL kernel debugging and memory and performance 
analysis tool that gathers data from the OpenCL run-time and OpenCL devices 
during the execution of an OpenCL application. This information is used to 
discover bottlenecks in the application and find ways to optimize the application’s 
performance for AMD platforms.

CodeXL 1.7, the latest version as of this writing, is available as an extension to 
Microsoft® Visual Studio®, a stand-alone version for Windows, and a stand-alone 
version for Linux.

For a high-level summary of CodeXL features, see Chapter 4 in the AMD 
OpenCL User Guide. For information about how to use CodeXL to gather 
performance data about your OpenCL application, such as application traces and 
timeline views, see the CodeXL home page.

The Timeline View can be useful for debugging your OpenCL application. 
Examples are given below.

• The Timeline View lets you easily confirm that the high-level structure of your 
application is correct by verifying that the number of queues and contexts 
created match your expectations for the application.

• You can confirm that synchronization has been performed properly in the 
application. For example, if kernel A execution is dependent on a buffer 
operation and outputs from kernel B execution, then kernel A execution must 
appear after the completion of the buffer execution and kernel B execution 
in the time grid. It can be hard to find this type of synchronization error using 
traditional debugging techniques.

• You can confirm that the application has been using the hardware efficiently. 
For example, the timeline should show that non-dependent kernel executions 
and data transfer operations occurred simultaneously.

CodeXL also provides information about GPU kernel performance counters. This 
information can be used to find possible bottlenecks in the kernel execution. You 

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
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can find the list of performance counters supported by AMD Radeon™ GPUs in 
the CodeXL documentation. Once the trace data has been used to discover 
which kernel is most in need of optimization, you can collect the GPU 
performance counters to drill down into the kernel execution on a GPU device. 

The Analyze Mode in CodeXL provides the Statistics View, which can be used 
to gather useful statistics regarding the GPU usage of kernels.

1.2 Estimating Performance

1.2.1 Measuring Execution Time

The OpenCL runtime provides a built-in mechanism for timing the execution of 
kernels by setting the CL_QUEUE_PROFILING_ENABLE flag when the queue is 
created. Once profiling is enabled, the OpenCL runtime automatically records 
timestamp information for every kernel and memory operation submitted to the 
queue. 

OpenCL provides four timestamps: 

• CL_PROFILING_COMMAND_QUEUED - Indicates when the command is enqueued 
into a command-queue on the host. This is set by the OpenCL runtime when 
the user calls an clEnqueue* function.

• CL_PROFILING_COMMAND_SUBMIT - Indicates when the command is submitted 
to the device. For AMD GPU devices, this time is only approximately defined 
and is not detailed in this section.

• CL_PROFILING_COMMAND_START - Indicates when the command starts 
execution on the requested device.

• CL_PROFILING_COMMAND_END - Indicates when the command finishes 
execution on the requested device. 

The sample code below shows how to compute the kernel execution time (End-
Start):

cl_event myEvent;
cl_ulong startTime, endTime;

clCreateCommandQueue (…, CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel(…, &myEvent);
clFinish(myCommandQ); // wait for all events to finish

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START, 
sizeof(cl_ulong), &startTime, NULL);

clGetEventProfilingInfo(myEvent,  CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endTimeNs, NULL);

cl_ulong kernelExecTimeNs = endTime-startTime;

The CodeXL GPU Profiler also can record the execution time for a kernel 
automatically. The Kernel Time metric reported in the Profiler output uses the 
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built-in OpenCL timing capability and reports the same result as the 
kernelExecTimeNs calculation shown above.

Another interesting metric to track is the kernel launch time (Start – Queue). The 
kernel launch time includes both the time spent in the user application (after 
enqueuing the command, but before it is submitted to the device), as well as the 
time spent in the runtime to launch the kernel. For CPU devices, the kernel 
launch time is fast (tens of μs), but for discrete GPU devices it can be several 
hundred μs. Enabling profiling on a command queue adds approximately 10 μs 
to 40 μs overhead to all clEnqueue calls. Much of the profiling overhead affects 
the start time; thus, it is visible in the launch time. Be careful when interpreting 
this metric. To reduce the launch overhead, the AMD OpenCL runtime combines 
several command submissions into a batch. Commands submitted as batch 
report similar start times and the same end time. 

Measure performance of your test with CPU counters. Do not use OCL profiling. 
To determine if an application is executed asynchonically, build a dependent 
execution with OCL events. This is a "generic" solution; however, there is an 
exception when you can enable profiling and have overlap transfers. DRMDMA 
engines do not support timestamps ("GPU counters"). To get OCL profiling data, 
the runtime must synchronize the main command processor (CP) with the DMA 
engine; this disables overlap. Note, however, that Southern Islands has two 
independent main CPs and runtime pairs them with DMA engines. So, the 
application can still execute kernels on one CP, while another is synced with a 
DRM engine for profiling; this lets you profile it with APP or OCL profiling.

1.2.2 Using the OpenCL timer with Other System Timers

The resolution of the timer, given in ns, can be obtained from:

clGetDeviceInfo(…,CL_DEVICE_PROFILING_TIMER_RESOLUTION…);

AMD CPUs and GPUs report a timer resolution of 1 ns. AMD OpenCL devices 
are required to correctly track time across changes in frequency and power 
states. Also, the AMD APP SDK uses the same time-domain for all devices in 
the platform; thus, the profiling timestamps can be directly compared across the 
CPU and GPU devices.

The sample code below can be used to read the current value of the OpenCL 
timer clock. The clock is the same routine used by the AMD OpenCL runtime to 
generate the profiling timestamps. This function is useful for correlating other 
program events with the OpenCL profiling timestamps.

uint64_t 
timeNanos()
{
#ifdef linux

struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return (unsigned long long) tp.tv_sec * (1000ULL * 1000ULL * 

1000ULL) +



A M D  A P P  S D K

1-4 Chapter 1: OpenCL Performance and Optimization
Copyright © 2015 Advanced Micro Devices, Inc. All rights reserved.   

(unsigned long long) tp.tv_nsec;
#else

LARGE_INTEGER current;
QueryPerformanceCounter(&current);
return (unsigned long long)((double)current.QuadPart / 

m_ticksPerSec * 1e9);
#endif
}

Normal CPU time-of-day routines can provide a rough measure of the elapsed 
time of a GPU kernel. GPU kernel execution is non-blocking, that is, calls to 
enqueue*Kernel return to the CPU before the work on the GPU is finished. For 
an accurate time value, ensure that the GPU is finished. In OpenCL, you can 
force the CPU to wait for the GPU to become idle by inserting calls to 
clFinish() before and after the sequence you want to time; this increases the 
timing accuracy of the CPU routines. The routine clFinish() blocks the CPU 
until all previously enqueued OpenCL commands have finished.

For more information, see section 5.9, “Profiling Operations on Memory Objects 
and Kernels,” of the OpenCL 1.0 Specification.

1.2.3 Estimating Memory Bandwidth

The memory bandwidth required by a kernel is perhaps the most important 
performance consideration. To calculate this:

Effective Bandwidth = (Br + Bw)/T

where:
Br = total number of bytes read from global memory.
Bw = total number of bytes written to global memory.
T = time required to run kernel, specified in nanoseconds.

If Br and Bw are specified in bytes, and T in ns, the resulting effective bandwidth 
is measured in GB/s, which is appropriate for current CPUs and GPUs for which 
the peak bandwidth range is 20-260 GB/s. Computing Br and Bw requires a 
thorough understanding of the kernel algorithm; it also can be a highly effective 
way to optimize performance. For illustration purposes, consider a simple matrix 
addition: each element in the two source arrays is read once, added together, 
then stored to a third array. The effective bandwidth for a 1024x1024 matrix 
addition is calculated as:

Br = 2 x (1024 x 1024 x 4 bytes) = 8388608 bytes  ;; 2 arrays, 1024x1024, each
element 4-byte float

Bw = 1 x (1024 x 1024 x 4 bytes) = 4194304 bytes ;; 1 array, 1024x1024, each
element 4-byte float.

If the elapsed time for this copy as reported by the profiling timers is 1000000 ns 
(1 million ns, or .001 sec), the effective bandwidth is:

(Br+Bw)/T = (8388608+4194304)/1000000 = 12.6GB/s
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The CodeXL GPU Profiler can report the number of dynamic instructions per 
thread that access global memory through the FetchInsts and WriteInsts 
counters. The Fetch and Write reports average the per-thread counts; these can 
be fractions if the threads diverge. The Profiler also reports the dimensions of the 
global NDRange for the kernel in the GlobalWorkSize field. The total number of 
threads can be determined by multiplying together the three components of the 
range. If all (or most) global accesses are the same size, the counts from the 
Profiler and the approximate size can be used to estimate Br and Bw:

Br = Fetch * GlobalWorkitems * Size

Bw = Write * GlobalWorkitems * Element Size

where GlobalWorkitems is the dispatch size.

An example Profiler output and bandwidth calculation: 

WaveFrontSize = 192*144*1 = 27648 global work items.

In this example, assume we know that all accesses in the kernel are four bytes; 
then, the bandwidth can be calculated as:

Br = 70.8 * 27648 * 4 = 7829914 bytes

Bw = 0.5 * 27648 * 4 =    55296 bytes 

The bandwidth then can be calculated as:

(Br + Bw)/T = (7829914 bytes + 55296 bytes) / .9522 ms / 1000000
= 8.2 GB/s

Note: The performance model assumes zero cache utilization. If the kernel is 
reading the same data over and over again, it will be cached in the GPU L1/L2 
memory and will not affect global memory bandwidth.

1.3 OpenCL Memory Objects

This section explains the AMD OpenCL runtime policy for memory objects. It also 
recommends best practices for best performance.

OpenCL uses memory objects to pass data to kernels. These can be either 
buffers or images. Space for these is managed by the runtime, which uses 
several types of memory, each with different performance characteristics. Each 
type of memory is suitable for a different usage pattern. The following 
subsections describe: 

• the memory types used by the runtime; 

• how to control which memory kind is used for a memory object; 

• how the runtime maps memory objects for host access; 

Method  GlobalWorkSize  Time  Fetch  Write

runKernel_Cypress  {192; 144; 1} 0.9522 70.8 0.5
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• how the runtime performs memory object reading, writing and copying; 

• how best to use command queues; and 

• some recommended usage patterns.

1.3.1 Types of Memory Used by the Runtime

Memory is used to store memory objects that are accessed by kernels executing 
on the device, as well as to hold memory object data when they are mapped for 
access by the host application. This section describes the different memory kinds 
used by the runtime. Table 1.1 lists the performance of each memory type given 
a PCIe3-capable platform and a high-end AMD Radeon 7XXX discrete GPU. In 
Table 1.1, when host memory is accessed by the GPU shader, it is of type 
CL_MEM_ALLOC_HOST_PTR. When GPU memory is accessed by the CPU, it is of 
type CL_MEM_PERSISTENT_MEM_AMD.

Table 1.1 Memory Bandwidth in GB/s (R = read, W = write) in GB/s 

Host memory and device memory in the above table consists of one of the 
subtypes given below.

1.3.1.1  Unpinned Host Memory

This regular CPU memory can be accessed by the CPU at full memory 
bandwidth; however, it is not directly accessible by the GPU. For the GPU to 
transfer host memory to device memory (for example, as a parameter to 
clEnqueueReadBuffer or clEnqueueWriteBuffer), it first must be pinned (see 
section 1.3.1.2). Pinning takes time, so avoid incurring pinning costs where CPU 
overhead must be avoided.

When unpinned host memory is copied to device memory, the OpenCL runtime 
uses the following transfer methods.

• <=32 kB: For transfers from the host to device, the data is copied by the CPU 
to a runtime pinned host memory buffer, and the DMA engine transfers the 
data to device memory. The opposite is done for transfers from the device to 
the host.

• >32 kB and <=16 MB: The host memory physical pages containing the data 
are pinned, the GPU DMA engine is used, and the pages then are unpinned.

• >16 MB: Runtime pins host memory in stages of 16 MB blocks and transfers 
data to the device using the GPU DMA engine. Double buffering for pinning 

Table 2: 

CPU R GPU W GPU Shader R GPU Shader W
GPU DMA 
R

GPU DMA 
W

Host Memory 10 - 20 10 - 20 9 - 10 2.5 11 - 12 11 - 12

GPU Memory .01 9 - 10 230 120 -150 n/a n/a
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is used to overlap the pinning cost of each 16 MB block with the DMA 
transfer.

Due to the cost of copying to staging buffers, or pinning/unpinning host memory, 
host memory does not offer the best transfer performance.

1.3.1.2  Pinned Host Memory

This is host memory that the operating system has bound to a fixed physical 
address and that the operating system ensures is resident. The CPU can access 
pinned host memory at full memory bandwidth. The runtime limits the total 
amount of pinned host memory that can be used for memory objects. (See 
Section 1.3.2, “Placement,” page 1-8, for information about pinning memory.

If the runtime knows the data is in pinned host memory, it can be transferred to, 
and from, device memory without requiring staging buffers or having to perform 
pinning/unpinning on each transfer. This offers improved transfer performance.

Currently, the runtime recognizes only data that is in pinned host memory for 
operation arguments that are memory objects it has allocated in pinned host 
memory. For example, the buffer argument of 
clEnqueueReadBuffer/clEnqueueWriteBuffer and image argument of 
clEnqueueReadImage/clEnqueueWriteImage. It does not detect that the ptr 
arguments of these operations addresses pinned host memory, even if they are 
the result of clEnqueueMapBuffer/clEnqueueMapImage on a memory object that 
is in pinned host memory.

The runtime can make pinned host memory directly accessible from the GPU. 
Like regular host memory, the CPU uses caching when accessing pinned host 
memory. For discrete devices, the GPU access to this memory is through the 
PCIe bus, which also limits bandwidth. For APU devices that do not have the 
PCIe overhead, GPU access is significantly slower than accessing device-visible 
host memory (see section 1.3.1.3), which does not use the cache coherency 
protocol.

1.3.1.3  Device-Visible Host Memory

The runtime allocates a limited amount of pinned host memory that is accessible 
by the GPU without using the CPU cache coherency protocol. This allows the 
GPU to access the memory at a higher bandwidth than regular pinned host 
memory.

A portion of this memory is also configured to be accessible by the CPU as 
uncached memory. Thus, reads by the CPU are significantly slower than those 
from regular host memory. However, these pages are also configured to use the 
memory system write combining buffers. A user allocated buffer is internally 
partitioned by the chip-set to write combine regions. The size and alignment of 
these regions are chip-set dependent. Typically, the regions are 64 bytes in size, 
each aligned to start on a 64-byte memory address.
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These allow writes to adjacent memory locations to be combined into a single 
memory access. This allows CPU streaming writes to perform reasonably well. 
Scattered writes that do not fill the write combining buffers before they have to 
be flushed do not perform as well.

APU devices have no device memory and use device-visible host memory for 
their global device memory.

1.3.1.4  Device Memory

Discrete GPU devices have their own dedicated memory, which provides the 
highest bandwidth for GPU access. The CPU cannot directly access device 
memory on a discrete GPU (except for the host-visible device memory portion 
described in section 1.3.1.5).

On an APU, the system memory is shared between the GPU and the CPU; it is 
visible by either the CPU or the GPU at any given time. A significant benefit of 
this is that buffers can be zero copied between the devices by using map/unmap 
operations to logically move the buffer between the CPU and the GPU address 
space. (Note that in the system BIOS at boot time, it is possible to allocate the 
size of the frame buffer. This section of memory is divided into two parts, one of 
which is invisible to the CPU. Thus, not all system memory supports zero copy. 
See Table 1.1, specifically the Default row.) See Section 1.3.4, “Mapping,” 
page 1-10, for more information on zero copy.

1.3.1.5  Host-Visible Device Memory

A limited portion of discrete GPU device memory is configured to be directly 
accessible by the CPU. It can be accessed by the GPU at full bandwidth, but 
CPU access is over the PCIe bus; thus, it is much slower than host memory 
bandwidth. The memory is mapped into the CPU address space as uncached, 
but using the memory system write combining buffers. This results in slow CPU 
reads and scattered writes, but streaming CPU writes perform much better 
because they reduce PCIe overhead.

1.3.2 Placement

Every OpenCL memory object has a location that is defined by the flags passed 
to clCreateBuffer/clCreateImage. A memory object can be located either on 
a device, or it can be located on the host and accessed directly by all the 
devices. The Location column of Table 1.1 gives the memory type used for each 
of the allocation flag values for different kinds of devices. When a device kernel 
is executed, it accesses the contents of memory objects from this location. The 
performance of these accesses is determined by the kind of memory used.

An OpenCL context can have multiple devices, and a memory object that is 
located on a device has a location on each device. To avoid over-allocating 
device memory for memory objects that are never used on that device, space is 
not allocated until first used on a device-by-device basis. For this reason, the first 
use of a memory object after it is created can be slower than subsequent uses.
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Table 1.1 OpenCL Memory Object Properties 

1.3.3 Memory Allocation

1.3.3.1  Using the CPU

Create memory objects with CL_MEM_ALLOC_HOST_PTR, and use map/unmap; do 
not use read/write. The reason for this is that if the object is created with 
CL_MEM_USE_HOST_PTR the CPU is running the kernel on the buffer provided by 

Table 2: 

clCreateBuffer/
clCreateImage Flags 
Argument Device Type Location

clEnqueueMapBuffer/
clEnqueueMapImage/
clEnqueueUnmapMemObject

Map 
Mode Map Location

Default
(none of the following flags)

Discrete 
GPU

Device memory Copy Host memory 
(different memory 
area can be used on 
each map).APU Device-visible host 

memory

CPU Use Map Location 
directly

Zero 
copy

CL_MEM_ALLOC_HOST_PTR,
CL_MEM_USE_HOST_PTR
(clCreateBuffer when VM is 
enabled)

Discrete 
GPU

Pinned host 
memory shared by 
all devices in 
context (unless 
only device in 
context is CPU; 
then, host 
memory)

Zero 
copy

Use Location directly 
(same memory area 
is used on each 
map).APU

CPU

CL_MEM_ALLOC_HOST_PTR,
CL_MEM_USE_HOST_PTR

(for clCreateImage and 
clCreateBuffer without VM)

Discrete 
GPU

Device memory Copy Pinned host memory, 
unless only device in 
context is CPU; then, 
host memory (same 
memory area is used 
on each map).

APU Device-visible 
memory

CPU Zero 
copy

CL_MEM_USE_PERSISTENT_MEM_
AMD
(when VM is enabled)

Discrete 
GPU

Host-visible device 
memory

Zero 
copy

Use Location directly 
(different memory 
area can be used on 
each map).APU Host-visible device 

memory

CPU Host memory

CL_MEM_USE_PERSISTENT_MEM_
AMD
(when VM is not enabled)

Same as default.
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the application (a hack that all vendors use). This results in zero copy between 
the CPU and the application buffer; the kernel updates the application buffer, and 
in this case a map/unmap is actually a no-op. Also, when allocating the buffer on 
the host, ensure that it is created with the correct alignment. For example, a 
buffer to be used as float4* must be 128-bit aligned.

1.3.3.2  Using Both CPU and GPU Devices, or using an APU Device

When creating memory objects, create them with 
CL_MEM_USE_PERSISTENT_MEM_AMD. This enables the zero copy feature, as 
explained in Section 1.3.3.1, “Using the CPU.”.

1.3.3.3  Buffers vs Images

Unlike GPUs, CPUs do not contain dedicated hardware (samplers) for accessing 
images. Instead, image access is emulated in software. Thus, a developer may 
prefer using buffers instead of images if no sampling operation is needed. 

1.3.3.4  Choosing Execution Dimensions

Note the following guidelines.

• Make the number of work-groups a multiple of the number of logical CPU 
cores (device compute units) for maximum use.

• When work-groups number exceed the number of CPU cores, the CPU cores 
execute the work-groups sequentially. 

1.3.4 Mapping

The host application can use clEnqueueMapBuffer/clEnqueueMapImage to 
obtain a pointer that can be used to access the memory object data. When 
finished accessing, clEnqueueUnmapMemObject must be used to make the data 
available to device kernel access. When a memory object is located on a device, 
the data either can be transferred to, and from, the host, or be accessed directly 
from the host. Memory objects that are located on the host, or located on the 
device but accessed directly by the host, are termed zero copy memory objects. 
The data is never transferred, but is accessed directly by both the host and 
device. Memory objects that are located on the device and transferred to, and 
from, the device when mapped and unmapped are termed copy memory objects. 
The Map Mode column of Table 1.1 specifies the transfer mode used for each 
kind of memory object, and the Map Location column indicates the kind of 
memory referenced by the pointer returned by the map operations.

1.3.4.1  Zero Copy Memory Objects

CL_MEM_USE_PERSISTENT_MEM_AMD, CL_MEM_USE_HOST_PTR, and 
CL_MEM_ALLOC_HOST_PTR support zero copy memory objects. The first provides 
device-resident zero copy memory objects; the other two provide host-resident 
zero copy memory objects.
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Zero copy memory objects can be used by an application to optimize data 
movement. When clEnqueueMapBuffer / clEnqueueMapImage / 
clEnqueueUnmapMemObject are used, no runtime transfers are performed, and 
the operations are very fast; however, the runtime can return a different pointer 
value each time a zero copy memory object is mapped. Note that only images 
created with CL_MEM_USE_PERSISTENT_MEM_AMD can be zero copy.

From Southern Island on, devices support zero copy memory objects under 
Linux; however, only images created with CL_MEM_USE_PERSISTENT_MEM_AMD can 
be zero copy. 

Zero copy host resident memory objects can boost performance when host 
memory is accessed by the device in a sparse manner or when a large host 
memory buffer is shared between multiple devices and the copies are too 
expensive. When choosing this, the cost of the transfer must be greater than the 
extra cost of the slower accesses.

Streaming writes by the host to zero copy device resident memory objects are 
about as fast as the transfer rates, so this can be a good choice when the host 
does not read the memory object to avoid the host having to make a copy of the 
data to transfer. Memory objects requiring partial updates between kernel 
executions can also benefit. If the contents of the memory object must be read 
by the host, use clEnqueueCopyBuffer to transfer the data to a separate 
CL_MEM_ALLOC_HOST_PTR buffer.

1.3.4.2  Copy Memory Objects

For memory objects with copy map mode, the memory object location is on the 
device, and it is transferred to, and from, the host when clEnqueueMapBuffer / 
clEnqueueMapImage / clEnqueueUnmapMemObject are called. Table 1.1 shows 
how the map_flags argument affects transfers. The runtime transfers only the 
portion of the memory object requested in the offset and cb arguments. When 
accessing only a portion of a memory object, only map that portion for improved 
performance.

Table 1.1 Transfer policy on clEnqueueMapBuffer / clEnqueueMapImage / 
clEnqueueUnmapMemObject for Copy Memory Objects

Table 2: 

clEnqueueMapBuffer / 
clEnqueueMapImage 
map_flags argument

Transfer on clEnqueueMapBuffer / 
clEnqueueMapImage

Transfer on 
clEnqueueUnmapMemObje
ct

CL_MAP_READ Device to host, if map location is not current. None.

CL_MAP_WRITE Device to host, if map location is not current. Host to device.

CL_MAP_READ
CL_MAP_WRITE

Device to host if map location is not current. Host to device.
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For default memory objects, the pointer returned by clEnqueueMapBuffer / 
clEnqueueMapImage may not be to the same memory area each time because 
different runtime buffers may be used.

For CL_MEM_USE_HOST_PTR and CL_MEM_ALLOC_HOST_PTR the same map location 
is used for all maps; thus, the pointer returned is always in the same memory 
area. For other copy memory objects, the pointer returned may not always be to 
the same memory region.

For CL_MEM_USE_HOST_PTR and the CL_MEM_ALLOC_HOST_PTR cases that use 
copy map mode, the runtime tracks if the map location contains an up-to-date 
copy of the memory object contents and avoids doing a transfer from the device 
when mapping as CL_MAP_READ. This determination is based on whether an 
operation such as clEnqueueWriteBuffer/clEnqueueCopyBuffer or a kernel 
execution has modified the memory object. If a memory object is created with 
CL_MEM_READ_ONLY, then a kernel execution with the memory object as an 
argument is not considered as modifying the memory object. Default memory 
objects cannot be tracked because the map location changes between map calls; 
thus, they are always transferred on the map.

For CL_MEM_USE_HOST_PTR, clCreateBuffer/clCreateImage pins the host 
memory passed to the host_ptr argument. It is unpinned when the memory 
object is deleted. To minimize pinning costs, align the memory to 4KiB. This 
avoids the runtime having to pin/unpin on every map/unmap transfer, but does 
add to the total amount of pinned memory.

For CL_MEM_USE_HOST_PTR, the host memory passed as the ptr argument of 
clCreateBuffer/clCreateImage is used as the map location. As mentioned 
earlier, host memory transfers incur considerable cost in pinning/unpinning on 
every transfer. If used, ensure the memory aligned to the data type size used in 
the kernels. If host memory that is updated once is required, use 
CL_MEM_ALLOC_HOST_PTR with the CL_MEM_COPY_HOST_PTR flag instead. If device 
memory is needed, use CL_MEM_USE_PERSISTENT_MEM_AMD and 
clEnqueueWriteBuffer.

If CL_MEM_COPY_HOST_PTR is specified with CL_MEM_ALLOC_HOST_PTR when 
creating a memory object, the memory is allocated in pinned host memory and 
initialized with the passed data. For other kinds of memory objects, the deferred 
allocation means the memory is not yet allocated on a device, so the runtime has 
to copy the data into a temporary runtime buffer. The memory is allocated on the 
device when the device first accesses the resource. At that time, any data that 
must be transferred to the resource is copied. For example, this would apply 

CL_MAP_WRITE_INVA
LIDATE_REGION

None. Host to device.

Table 2: 

clEnqueueMapBuffer / 
clEnqueueMapImage 
map_flags argument

Transfer on clEnqueueMapBuffer / 
clEnqueueMapImage

Transfer on 
clEnqueueUnmapMemObje
ct
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when a buffer was allocated with the flag CL_MEM_COPY_HOST_PTR. Using 
CL_MEM_COPY_HOST_PTR for these buffers is not recommended because of the 
extra copy. Instead, create the buffer without CL_MEM_COPY_HOST_PTR, and 
initialize with clEnqueueWriteBuffer/clEnqueueWriteImage.

When images are transferred, additional costs are involved because the image 
must be converted to, and from, linear address mode for host access. The 
runtime does this by executing kernels on the device.

1.3.5 Reading, Writing, and Copying

There are numerous OpenCL commands to read, write, and copy buffers and 
images. The runtime performs transfers depending on the memory kind of the 
source and destination. When transferring between host memory and device 
memory the methods described in section Section 1.3.1.1, “Unpinned Host 
Memory,” page 1-6, are used. Memcpy is used to transferring between the various 
kinds of host memory, this may be slow if reading from device visible host 
memory, as described in section Section 1.3.1.3, “Device-Visible Host Memory,” 
page 1-7. Finally, device kernels are used to copy between device memory. For 
images, device kernels are used to convert to and from the linear address mode 
when necessary.

1.3.6 Command Queue

It is best to use non-blocking commands to allow multiple commands to be 
queued before the command queue is flushed to the GPU. This sends larger 
batches of commands, which amortizes the cost of preparing and submitting 
work to the GPU. Use event tracking to specify the dependence between 
operations. It is recommended to queue operations that do not depend of the 
results of previous copy and map operations. This can help keep the GPU busy 
with kernel execution and DMA transfers. Command execution begins as soon 
as there are commands in the queue for execution.

For Southern Islands and later, devices support at least two hardware compute 
queues. That allows an application to increase the throughput of small dispatches 
with two command queues for asynchronous submission and possibly concurrent 
execution. 

An OpenCL queue is assigned to a hardware queue on creation time. The 
hardware compute queues are selected according to the creation order within an 
OpenCL context. If the hardware supports K concurrent hardware queues, the 
Nth created OpenCL queue within a specific OpenCL context will be assigned to 
the (N mod K) hardware queue. The number of compute queues can be limited 
by specifying the GPU_NUM_COMPUTE_RINGS environment variable.

Devices in the Sea Islands and Volcanic Islands families contain between four 
and eight ACEs, and are multi-threaded (thereby supporting more hardware 
queues), so they offer more performance. For example, the AMD Radeon™ R9 
290X devices, in the VI family contain 8 ACEs and 44 CUs. 
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1.3.6.1  A note on hardware queues

A hardware queue can be thought of as a GPU entry point. The GPU can 
process kernels from several compute queues concurrently. All hardware queues 
ultimately share the same compute cores. The use of multiple hardware queues 
is beneficial when launching small kernels that do not fully saturate the GPU. For 
example, the AMD Radeon™ HD 290X compute device can execute up to 
112,640 threads concurrently. The GPU can execute two kernels each spawning 
56320 threads (assuming fully occupancy) twice as fast if launched concurrently 
through two hardware queues than serially through a single hardware queue. 

1.4 OpenCL Data Transfer Optimization

The AMD OpenCL implementation offers several optimized paths for data 
transfer to, and from, the device. The following chapters describe buffer and 
image paths, as well as how they map to common application scenarios. To find 
out where the application’s buffers are stored (and understand how the data 
transfer behaves), use the CodeXL GPU Profiler API Trace View, and look at the 
tool tips of the clEnqueueMapBuffer calls.

1.4.1 Definitions

• Deferred allocation — The CL runtime attempts to minimize resource 
consumption by delaying buffer allocation until first use. As a side effect, the 
first accesses to a buffer may be more expensive than subsequent accesses. 

• Peak interconnect bandwidth — As used in the text below, this is the transfer 
bandwidth between host and device that is available under optimal conditions 
at the application level. It is dependent on the type of interconnect, the 
chipset, and the graphics chip. As an example, a high-performance PC with 
a PCIe 3.0 16x bus and a GCN architecture (AMD Radeon HD 7XXX 
series) graphics card has a nominal interconnect bandwidth of 16 GB/s.

• Pinning — When a range of host memory is prepared for transfer to the 
GPU, its pages are locked into system memory. This operation is called 
pinning; it can impose a high cost, proportional to the size of the memory 
range. One of the goals of optimizing data transfer is to use pre-pinned 
buffers whenever possible. However, if pre-pinned buffers are used 
excessively, it can reduce the available system memory and result in 
excessive swapping. Host side zero copy buffers provide easy access to pre-
pinned memory.

• WC — Write Combine is a feature of the CPU write path to a select region 
of the address space. Multiple adjacent writes are combined into cache lines 
(for example, 64 bytes) before being sent to the external bus. This path 
typically provides fast streamed writes, but slower scattered writes. 
Depending on the chip set, scattered writes across a graphics interconnect 
can be very slow. Also, some platforms require multi-core CPU writes to 
saturate the WC path over an interconnect.
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• Uncached accesses — Host memory and I/O regions can be configured as 
uncached. CPU read accesses are typically very slow; for example: 
uncached CPU reads of graphics memory over an interconnect.

• USWC — Host memory from the Uncached Speculative Write Combine heap 
can be accessed by the GPU without causing CPU cache coherency traffic. 
Due to the uncached WC access path, CPU streamed writes are fast, while 
CPU reads are very slow. On APU devices, this memory provides the fastest 
possible route for CPU writes followed by GPU reads.

1.4.2 Buffers

OpenCL buffers currently offer the widest variety of specialized buffer types and 
optimized paths, as well as slightly higher transfer performance.

1.4.2.1  Regular Device Buffers

Buffers allocated using the flags CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, or 
CL_MEM_READ_WRITE are placed on the GPU device. These buffers can be 
accessed by a GPU kernel at very high bandwidths. For example, on a high-end 
graphics card, the OpenCL kernel read/write performance is significantly higher 
than 100 GB/s. When device buffers are accessed by the host through any of 
the OpenCL read/write/copy and map/unmap API calls, the result is an explicit 
transfer across the hardware interconnect.

1.4.2.2  Zero Copy Buffers

If a buffer is of the zero copy type, the runtime tries to leave its content in place, 
unless the application explicitly triggers a transfer (for example, through 
clEnqueueCopyBuffer()). Depending on its type, a zero copy buffer resides on 
the host or the device. Independent of its location, it can be accessed directly by 
the host CPU or a GPU device kernel, at a bandwidth determined by the 
capabilities of the hardware interconnect. 

Calling clEnqueueMapBuffer() and clEnqueueUnmapMemObject() on a zero 
copy buffer is typically a low-cost operation. 

Since not all possible read and write paths perform equally, check the application 
scenarios below for recommended usage. To assess performance on a given 
platform, use the BufferBandwidth sample. 

If a given platform supports the zero copy feature, the following buffer types are 
available:

• The CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR buffers are:

– zero copy buffers that resides on the host.

– directly accessible by the host at host memory bandwidth.

– directly accessible by the device across the interconnect.

– a pre-pinned sources or destinations for CL read, write, and copy 
commands into device memory at peak interconnect bandwidth.
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Note that buffers created with the flag CL_MEM_ALLOC_HOST_PTR together with 
CL_MEM_READ_ONLY may reside in uncached write-combined memory. As a 
result, CPU can have high streamed write bandwidth, but low read and 
potentially low write scatter bandwidth, due to the uncached WC path.

• The CL_MEM_USE_PERSISTENT_MEM_AMD buffer is

– a zero copy buffer that resides on the GPU device.

– directly accessible by the GPU device at GPU memory bandwidth.

– directly accessible by the host across the interconnect (typically with high 
streamed write bandwidth, but low read and potentially low write scatter 
bandwidth, due to the uncached WC path).

– copyable to, and from, the device at peak interconnect bandwidth using 
CL read, write, and copy commands.

There is a limit on the maximum size per buffer, as well as on the total size 
of all buffers. This is platform-dependent, limited in size for each buffer, and 
also for the total size of all buffers of that type (a good working assumption 
is 64 MB for the per-buffer limit, and 128 MB for the total).

Note: The CL_MEM_USE_PERSISTENT_MEM_AMD buffer is very small. It must be 
used only for cases that can directly benefit by having the application directly 
update the contents of a resource on the device.

Zero copy buffers work well on APU devices. SDK 2.5 introduced an optimization 
that is of particular benefit on APUs. The runtime uses USWC memory for buffers 
allocated as CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY. On APU systems, 
this type of zero copy buffer can be written to by the CPU at very high data rates, 
then handed over to the GPU at minimal cost for equally high GPU read-data 
rates over the Radeon memory bus. This path provides the highest data transfer 
rate for the CPU-to-GPU path. The use of multiple CPU cores may be necessary 
to achieve peak write performance.

1. buffer = clCreateBuffer(CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY)

2. address = clMapBuffer( buffer )

3. memset( address ) or memcpy( address ) (if possible, using multiple CPU 
cores)

4. clEnqueueUnmapMemObject( buffer )

5. clEnqueueNDRangeKernel( buffer  )

As this memory is not cacheable, CPU read operations are very slow. This type 
of buffer also exists on discrete platforms, but transfer performance typically is 
limited by PCIe bandwidth. 

Zero copy buffers can provide low latency for small transfers, depending on the 
transfer path. For small buffers, the combined latency of map/CPU memory 
access/unmap can be smaller than the corresponding DMA latency.
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1.4.2.3  Pre-pinned Buffers

Buffers of type CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR are pinned at 
creation time. These buffers can be used directly as a source or destination for 
clEnqueueCopyBuffer to achieve peak interconnect bandwidth. Mapped buffers 
also can be used as a source or destination for clEnqueueRead/WriteBuffer 
calls, again achieving peak interconnect bandwidth. Note that using 
CL_MEM_USE_HOST_PTR permits turning an existing user memory region into pre-
pinned memory. However, in order to stay on the fast path, that memory must be 
aligned to 256 bytes. Buffers of type CL_MEM_USE_HOST_PTR remain pre-pinned 
as long as they are used only for data transfer, but not as kernel arguments. If 
the buffer is used in a kernel, the runtime creates a cached copy on the device, 
and subsequent copies are not on the fast path. The same restriction applies to 
CL_MEM_ALLOC_HOST_PTR allocations under Linux.

See usage examples described for various options below.

The pre-pinned path is supported for the following calls.

• clEnqueueRead/WriteBuffer

• clEnqueueRead/WriteImage

• clEnqueueRead/WriteBufferRect

Offsets into mapped buffer addresses are supported, too.

Note that the CL image calls must use pre-pinned mapped buffers on the host 
side, and not pre-pinned images.

1.4.2.4  Application Scenarios and Recommended OpenCL Paths

The following section describes various application scenarios, and the 
corresponding paths in the OpenCL API that are known to work well on AMD 
platforms. The various cases are listed, ordered from generic to more 
specialized.

From an application point of view, two fundamental use cases exist, and they can 
be linked to the various options, described below.

• An application wants to transfer a buffer that was already allocated through 
malloc() or mmap(). In this case, options 2), 3) and 4) below always consist 
of a memcpy() plus a device transfer. Option 1) does not require a memcpy().

• If an application is able to let OpenCL allocate the buffer, options 2) and 4) 
below can be used to avoid the extra memcpy(). In the case of option 5), 
memcpy() and transfer are identical.

Note that the OpenCL runtime uses deferred allocation to maximize memory 
resources. This means that a complete roundtrip chain, including data transfer 
and kernel compute, might take one or two iterations to reach peak performance.

A code sample named BufferBandwidth can be used to investigate and 
benchmark the various transfer options in combination with different buffer types.
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Option 1 - clEnqueueWriteBuffer() and clEnqueueReadBuffer()

This option is the easiest to use on the application side. 
CL_MEM_USE_HOST_PTR is an ideal choice if the application wants to transfer 
a buffer that has already been allocated through malloc() or mmap().

There are two ways to use this option. The first uses 
clEnqueueRead/WriteBuffer on a pre-pinned, mapped host-side buffer:

a. pinnedBuffer = clCreateBuffer( CL_MEM_ALLOC_HOST_PTR or 
CL_MEM_USE_HOST_PTR )

b. deviceBuffer = clCreateBuffer()

c. void *pinnedMemory = clEnqueueMapBuffer( pinnedBuffer )

d. clEnqueueRead/WriteBuffer( deviceBuffer, pinnedMemory )

e. clEnqueueUnmapMemObject( pinnedBuffer, pinnedMemory ) 

The pinning cost is incurred at step c. Step d does not incur any pinning cost. 
Typically, an application performs steps a, b, c, and e once. It then repeatedly 
reads or modifies the data in pinnedMemory, followed by step d.

For the second way to use this option, clEnqueueRead/WriteBuffer is used 
directly on a user memory buffer. The standard clEnqueueRead/Write calls 
require to pin (lock in memory) memory pages before they can be copied (by 
the DMA engine). This creates a performance penalty that is proportional to 
the buffer size. The performance of this path is currently about two-thirds of 
peak interconnect bandwidth. 

Option 2 - clEnqueueCopyBuffer() on a pre-pinned host buffer (requires 
pre-pinned buffer support)

This is analogous to Option 1. Performing a CL copy of a pre-pinned buffer 
to a device buffer (or vice versa) runs at peak interconnect bandwidth.

a. pinnedBuffer = clCreateBuffer( CL_MEM_ALLOC_HOST_PTR or 
CL_MEM_USE_HOST_PTR )

b. deviceBuffer = clCreateBuffer()

This is followed either by:

c. void *memory = clEnqueueMapBuffer( pinnedBuffer )

d. Application writes or modifies memory.

e. clEnqueueUnmapMemObject( pinnedBuffer, memory ) 

f. clEnqueueCopyBuffer( pinnedBuffer, deviceBuffer )

or by:

g. clEnqueueCopyBuffer( deviceBuffer, pinnedBuffer )

h. void *memory = clEnqueueMapBuffer( pinnedBuffer )

i. Application reads memory.

j. clEnqueueUnmapMemObject( pinnedBuffer, memory ) 

Since the pinnedBuffer resides in host memory, the clMap() and clUnmap() 
calls do not result in data transfers, and they are of very low latency. Sparse 
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or dense memory operations by the application take place at host memory 
bandwidth.

Option 3 - clEnqueueMapBuffer() and clEnqueueUnmapMemObject() of a 
Device Buffer

This is a good choice if the application fills in the data on the fly, or requires 
a pointer for calls to other library functions (such as fread() or fwrite()). 
An optimized path exists for regular device buffers; this path provides peak 
interconnect bandwidth at map/unmap time.

For buffers already allocated through malloc() or mmap(), the total transfer 
cost includes a memcpy() into the mapped device buffer, in addition to the 
interconnect transfer. Typically, this is slower than option 1), above.

The transfer sequence is as follows:

a. Data transfer from host to device buffer.

1. ptr = clEnqueueMapBuffer( .., buf, .., CL_MAP_WRITE, .. 
)

Since the buffer is mapped write-only, no data is transferred from 
device buffer to host. The map operation is very low cost. A pointer 
to a pinned host buffer is returned.

2. The application fills in the host buffer through memset( ptr ), 
memcpy ( ptr, srcptr ), fread( ptr ), or direct CPU writes. 
This happens at host memory bandwidth.

3. clEnqueueUnmapMemObject( .., buf, ptr, .. )

The pre-pinned buffer is transferred to the GPU device, at peak 
interconnect bandwidth.

b. Data transfer from device buffer to host.

1. ptr = clEnqueueMapBuffer(.., buf, .., CL_MAP_READ, .. ) 

This command triggers a transfer from the device to host memory, 
into a pre-pinned temporary buffer, at peak interconnect bandwidth. 
A pointer to the pinned memory is returned.

2. The application reads and processes the data, or executes a 
memcpy( dstptr, ptr ), fwrite (ptr), or similar function. Since 
the buffer resides in host memory, this happens at host memory 
bandwidth.

3. clEnqueueUnmapMemObject( .., buf, ptr, .. )

Since the buffer was mapped as read-only, no transfer takes place, 
and the unmap operation is very low cost.

Option 4 - Direct host access to a zero copy device buffer (requires zero copy 
support)

This option allows overlapping of data transfers and GPU compute. It is also 
useful for sparse write updates under certain constraints.
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a. A zero copy buffer on the device is created using the following command:

buf = clCreateBuffer ( .., CL_MEM_USE_PERSISTENT_MEM_AMD, .. 
)

This buffer can be directly accessed by the host CPU, using the 
uncached WC path. This can take place at the same time the GPU 
executes a compute kernel. A common double buffering scheme has the 
kernel process data from one buffer while the CPU fills a second buffer. 
See the TransferOverlap code sample.

A zero copy device buffer can also be used to for sparse updates, such 
as assembling sub-rows of a larger matrix into a smaller, contiguous 
block for GPU processing. Due to the WC path, it is a good design 
choice to try to align writes to the cache line size, and to pick the write 
block size as large as possible. 

b. Transfer from the host to the device.

1. ptr = clEnqueueMapBuffer( .., buf, .., CL_MAP_WRITE, .. )

This operation is low cost because the zero copy device buffer is 
directly mapped into the host address space.

2. The application transfers data via memset( ptr ), memcpy( ptr, 
srcptr ), or direct CPU writes.

The CPU writes directly across the interconnect into the zero copy 
device buffer. Depending on the chipset, the bandwidth can be of 
the same order of magnitude as the interconnect bandwidth, 
although it typically is lower than peak.

3. clEnqueueUnmapMemObject( .., buf, ptr, .. )

As with the preceding map, this operation is low cost because the 
buffer continues to reside on the device.

c. If the buffer content must be read back later, use

clEnqueueReadBuffer( .., buf, ..)  or 

clEnqueueCopyBuffer( .., buf, zero copy host buffer, .. ).

This bypasses slow host reads through the uncached path.

Option 5 - Direct GPU access to a zero copy host buffer (requires zero copy 
support)

This option allows direct reads or writes of host memory by the GPU. A GPU 
kernel can import data from the host without explicit transfer, and write data 
directly back to host memory. An ideal use is to perform small I/Os straight 
from the kernel, or to integrate the transfer latency directly into the kernel 
execution time.

a. The application creates a zero copy host buffer.

buf = clCreateBuffer( .., CL_MEM_ALLOC_HOST_PTR, .. )
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b. Next, the application modifies or reads the zero copy host buffer.

1. ptr = clEnqueueMapBuffer( .., buf, .., CL_MAP_READ | 

CL_MAP_WRITE, .. )

This operation is very low cost because it is a map of a buffer 
already residing in host memory.

2. The application modifies the data through memset( ptr ), 
memcpy(in either direction), sparse or dense CPU reads or writes. 
Since the application is modifying a host buffer, these operations 
take place at host memory bandwidth.

3. clEnqueueUnmapMemObject( .., buf, ptr, .. )

As with the preceding map, this operation is very low cost because 
the buffer continues to reside in host memory.

c. The application runs clEnqueueNDRangeKernel(), using buffers of this 
type as input or output. GPU kernel reads and writes go across the 
interconnect to host memory, and the data transfer becomes part of the 
kernel execution.

The achievable bandwidth depends on the platform and chipset, but can 
be of the same order of magnitude as the peak interconnect bandwidth. 
For discrete graphics cards, it is important to note that resulting GPU 
kernel bandwidth is an order of magnitude lower compared to a kernel 
accessing a regular device buffer located on the device. 

d. Following kernel execution, the application can access data in the host 
buffer in the same manner as described above. 

1.5 Using Multiple OpenCL Devices

The AMD OpenCL runtime supports both CPU and GPU devices. This section 
introduces techniques for appropriately partitioning the workload and balancing it 
across the devices in the system. 

1.5.1 CPU and GPU Devices

Table 1.1 lists some key performance characteristics of two exemplary CPU and 
GPU devices: a quad-core AMD Phenom II X4 processor running at 2.8 GHz, 
and a mid-range AMD Radeon HD 7770 GPU running at 1 GHz. The “best” 
device in each characteristic is highlighted, and the ratio of the best/other device 
is shown in the final column.

The GPU excels at high-throughput: the peak execution rate (measured in 
FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher 
than the CPU. The GPU also consumes approximately 65% the power of the 
CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher. 
While power efficiency can vary significantly with different devices, GPUs 
generally provide greater power efficiency (flops/watt) than CPUs because they 
optimize for throughput and eliminate hardware designed to hide latency. 
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Table 1.1 CPU and GPU Performance Characteristics

Table 4.5 provides a comparison of the CPU and GPU performance charac-
teristics in an AMD A8-4555M “Trinity” APU (19 W, 21 GB/s memory bandwidth).

Table 1.2 CPU and GPU Performance Characteristics on APU

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add 
is 10X faster on the CPU than on the GPU. This is a product of both the CPUs 
higher clock rate (2800 MHz vs 1000 MHz for this comparison), as well as the 
operation latency; the CPU is optimized to perform an integer add in just one 
cycle, while the GPU requires four cycles. The CPU also has a latency-optimized 

CPU GPU Winner Ratio

Example Device AMD Phenom II X4 AMD Radeon HD 7770

Core Frequency 2800 MHz 1 GHz 3 X

Compute Units 4 10 2.5 X

Approx. Power1 95 W 80 W 1.2 X

Approx. Power/Compute Unit 19 W 8 W 2.4 X

Peak Single-Precision                   
Billion Floating-Point Ops/Sec

90 1280 14 X

Approx GFLOPS/Watt 0.9 16 18 X

Max In-flight HW Threads 4 25600 6400 X

Simultaneous Executing Threads 4 640 160 X

Memory Bandwidth 26 GB/s 72 GB/s 2.8 X

Int Add latency 0.4 ns 4 ns 10 X

FP Add Latency 1.4 ns 4 ns 2.9 X

Approx DRAM Latency 50 ns 270 ns 5.4 X

L2+L3 (GPU only L2) cache capacity 8192 KB 128 kB 64 X

Approx Kernel Launch Latency 25 μs 50 μs 2 X

1. For the power specifications of the AMD Phenom II x4, see http://www.amd.com/us/products/desk-
top/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx.

CPU GPU Winner Ratio

Core Frequency 2400 MHz 424 MHz 5.7 x

Compute Units 4 6 1.5 x

Peak Single Precision

Floating-Point Ops/s 77 GFLOPs 326 GFLOPs 4.2 x

Approx. GFLOPs/W 4.0 17.1 4.2 x

Max Inflight HW Threads 4 15872 3968 x

Simultaneous Executing Threads 4 96 24 x

Int Add Latency 0.4 ns 18.9 ns 45.3 x

FP Add Latency 1.7 ns 9.4 ns 5.7 x

Approx. DRAM Latency 50 ns 270 ns 5.4 x

L2 + L3 Cache Capacity 4192 kB 256 kB 16.4 x
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path to DRAM, while the GPU optimizes for bandwidth and relies on many in-
flight threads to hide the latency. The AMD Radeon HD 7770 GPU, for example, 
supports more than 25,000 in-flight work-items and can switch to a new 
wavefront (containing up to 64 work-items) in a single cycle. The CPU supports 
only four hardware threads, and thread-switching requires saving and restoring 
the CPU registers from memory. The GPU requires many active threads to both 
keep the execution resources busy, as well as provide enough threads to hide 
the long latency of cache misses.

Each GPU wavefront has its own register state, which enables the fast single-
cycle switching between threads. Also, GPUs can be very efficient at 
gather/scatter operations: each work-item can load from any arbitrary address, 
and the registers are completely decoupled from the other threads. This is 
substantially more flexible and higher-performing than a classic Vector ALU-style 
architecture (such as SSE on the CPU), which typically requires that data be 
accessed from contiguous and aligned memory locations. SSE supports 
instructions that write parts of a register (for example, MOVLPS and MOVHPS, which 
write the upper and lower halves, respectively, of an SSE register), but these 
instructions generate additional microarchitecture dependencies and frequently 
require additional pack instructions to format the data correctly. 

In contrast, each GPU thread shares the same program counter with 63 other 
threads in a wavefront. Divergent control-flow on a GPU can be quite expensive 
and can lead to significant under-utilization of the GPU device. When control flow 
substantially narrows the number of valid work-items in a wave-front, it can be 
faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this 
example, the CPU device contains 512 kB L2 cache/core plus a 6 MB L3 cache 
that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU 
device contains only 128 kB cache shared by the five compute units. The larger 
CPU cache serves both to reduce the average memory latency and to reduce 
memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 2X difference in kernel launch latency. The GPU 
launch time includes both the latency through the software stack, as well as the 
time to transfer the compiled kernel and associated arguments across the PCI-
express bus to the discrete GPU. Notably, the launch time does not include the 
time to compile the kernel. The CPU can be the device-of-choice for small, quick-
running problems when the overhead to launch the work on the GPU outweighs 
the potential speedup. Often, the work size is data-dependent, and the choice of 
device can be data-dependent as well. For example, an image-processing 
algorithm may run faster on the GPU if the images are large, but faster on the 
CPU when the images are small.

The differences in performance characteristics present interesting optimization 
opportunities. Workloads that are large and data parallel can run orders of 
magnitude faster on the GPU, and at higher power efficiency. Serial or small 
parallel workloads (too small to efficiently use the GPU resources) often run 
significantly faster on the CPU devices. In some cases, the same algorithm can 



A M D  A P P  S D K

1-24 Chapter 1: OpenCL Performance and Optimization
Copyright © 2015 Advanced Micro Devices, Inc. All rights reserved.   

exhibit both types of workload. A simple example is a reduction operation such 
as a sum of all the elements in a large array. The beginning phases of the 
operation can be performed in parallel and run much faster on the GPU. The end 
of the operation requires summing together the partial sums that were computed 
in parallel; eventually, the width becomes small enough so that the overhead to 
parallelize outweighs the computation cost, and it makes sense to perform a 
serial add. For these serial operations, the CPU can be significantly faster than 
the GPU. 

1.5.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run 
substantially faster and at better energy efficiency compared to a CPU device. 
Also, once an algorithm has been coded in the data-parallel task style for 
OpenCL, the same code typically can scale to run on GPUs with increasing 
compute capability (that is more compute units) or even multiple GPUs (with a 
little more work). 

For some algorithms, the advantages of the GPU (high computation throughput, 
latency hiding) are offset by the advantages of the CPU (low latency, caches, fast 
launch time), so that the performance on either devices is similar. This case is 
more common for mid-range GPUs and when running more mainstream 
algorithms. If the CPU and the GPU deliver similar performance, the user can 
get the benefit of either improved power efficiency (by running on the GPU) or 
higher peak performance (use both devices). 

Usually, when the data size is small, it is faster to use the CPU because the start-
up time is quicker than on the GPU due to a smaller driver overhead and 
avoiding the need to copy buffers from the host to the device.

1.5.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single 
OpenCL device. Thus, using multiple devices requires the developer to create a 
separate queue for each device, then partition the work between the available 
command queues. 

A simple scheme for partitioning work between devices would be to statically 
determine the relative performance of each device, partition the work so that 
faster devices received more work, launch all the kernels, and then wait for them 
to complete. In practice, however, this rarely yields optimal performance. The 
relative performance of devices can be difficult to determine, in particular for 
kernels whose performance depends on the data input. Further, the device 
performance can be affected by dynamic frequency scaling, OS thread 
scheduling decisions, or contention for shared resources, such as shared caches 
and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong” 
at the beginning can result in significantly lower performance, since some 
devices finish and become idle while the whole system waits for the single, 
unexpectedly slow device. 
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For these reasons, a dynamic scheduling algorithm is recommended. In this 
approach, the workload is partitioned into smaller parts that are periodically 
scheduled onto the hardware. As each device completes a part of the workload, 
it requests a new part to execute from the pool of remaining work. Faster devices, 
or devices which work on easier parts of the workload, request new input faster, 
resulting in a natural workload balancing across the system. The approach 
creates some additional scheduling and kernel submission overhead, but 
dynamic scheduling generally helps avoid the performance cliff from a single bad 
initial scheduling decision, as well as higher performance in real-world system 
environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling 
algorithms for multi-core CPUs, and it is natural to consider extending these 
scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new 
aspects to the scheduling process:

• Heterogeneous Compute Devices

Most existing multi-core schedulers target only homogenous computing 
devices. When scheduling across both CPU and GPU devices, the scheduler 
must be aware that the devices can have very different performance 
characteristics (10X or more) for some algorithms. To some extent, dynamic 
scheduling is already designed to deal with heterogeneous workloads (based 
on data input the same algorithm can have very different performance, even 
when run on the same device), but a system with heterogeneous devices 
makes these cases more common and more extreme. Here are some 
suggestions for these situations.

– The scheduler should support sending different workload sizes to 
different devices. GPUs typically prefer larger grain sizes, and higher-
performing GPUs prefer still larger grain sizes.

– The scheduler should be conservative about allocating work until after it 
has examined how the work is being executed. In particular, it is 
important to avoid the performance cliff that occurs when a slow device 
is assigned an important long-running task. One technique is to use small 
grain allocations at the beginning of the algorithm, then switch to larger 
grain allocations when the device characteristics are well-known.

– As a special case of the above rule, when the devices are substantially 
different in performance (perhaps 10X), load-balancing has only a small 
potential performance upside, and the overhead of scheduling the load 
probably eliminates the advantage. In the case where one device is far 
faster than everything else in the system, use only the fast device.

– The scheduler must balance small-grain-size (which increase the 
adaptiveness of the schedule and can efficiently use heterogeneous 
devices) with larger grain sizes (which reduce scheduling overhead).   
Note that the grain size must be large enough to efficiently use the GPU.

• Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a 
command-queue. The host application can enqueue multiple kernels, flush 
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the kernels so they begin executing on the device, then use the host core for 
other work. The AMD OpenCL implementation uses a separate thread for 
each command-queue, so work can be transparently scheduled to the GPU 
in the background.

Avoid starving the high-performance GPU devices. This can occur if the 
physical CPU core, which must re-fill the device queue, is itself being used 
as a device. A simple approach to this problem is to dedicate a physical CPU 
core for scheduling chores. The device fission extension (see the Extensions 
appendix in the AMD OpenCL User Guide) can be used to reserve a core 
for scheduling. For example, on a quad-core device, device fission can be 
used to create an OpenCL device with only three cores.

Another approach is to schedule enough work to the device so that it can 
tolerate latency in additional scheduling. Here, the scheduler maintains a 
watermark of uncompleted work that has been sent to the device, and refills 
the queue when it drops below the watermark. This effectively increase the 
grain size, but can be very effective at reducing or eliminating device 
starvation. Developers cannot directly query the list of commands in the 
OpenCL command queues; however, it is possible to pass an event to each 
clEnqueue call that can be queried, in order to determine the execution 
status (in particular the command completion time); developers also can 
maintain their own queue of outstanding requests.

For many algorithms, this technique can be effective enough at hiding 
latency so that a core does not need to be reserved for scheduling. In 
particular, algorithms where the work-load is largely known up-front often 
work well with a deep queue and watermark. Algorithms in which work is 
dynamically created may require a dedicated thread to provide low-latency 
scheduling.

• Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a 
separate address space. Moving data between the device address space 
and the host requires time-consuming transfers over a relatively slow PCI-
Express bus. Schedulers should be aware of this cost and, for example, 
attempt to schedule work that consumes the result on the same device 
producing it.

CPU and GPU devices share the same memory bandwidth, which results in 
additional interactions of kernel executions.

1.5.4 Synchronization Caveats

Enqueuing several commands before flushing can enable the host CPU to batch 
together the command submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to 
complete execution of each command before the next command begins. This 
synchronization guarantee can often be leveraged to avoid explicit 
clWaitForEvents() calls between command submissions. Using 
clWaitForEvents() requires intervention by the host CPU and additional 
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synchronization cost between the host and the GPU; by leveraging the in-order 
queue property, back-to-back kernel executions can be efficiently handled 
directly on the GPU hardware.

AMD Southern Islands GPUs can execute multiple kernels simultaneously when 
there are no dependencies.

The AMD OpenCL implementation spawns a new thread to manage each 
command queue. Thus, the OpenCL host code is free to manage multiple 
devices from a single host thread. Note that clFinish is a blocking operation; 
the thread that calls clFinish blocks until all commands in the specified 
command-queue have been processed and completed. If the host thread is 
managing multiple devices, it is important to call clFlush for each command-
queue before calling clFinish, so that the commands are flushed and execute 
in parallel on the devices. Otherwise, the first call to clFinish blocks, the 
commands on the other devices are not flushed, and the devices appear to 
execute serially rather than in parallel.

For low-latency CPU response, it can be more efficient to use a dedicated spin 
loop and not call clFinish() Calling clFinish() indicates that the application 
wants to wait for the GPU, putting the thread to sleep. For low latency, the 
application should use clFlush(), followed by a loop to wait for the event to 
complete. This is also true for blocking maps. The application should use non-
blocking maps followed by a loop waiting on the event. The following provides 
sample code for this.

if (sleep)

{

// this puts host thread to sleep, useful if power is a 
consideration

or overhead is not a concern

clFinish(cmd_queue_);

}

else

{

// this keeps the host thread awake, useful if latency 
is a concern

clFlush(cmd_queue_);

error_ = clGetEventInfo(event, 
CL_EVENT_COMMAND_EXECUTION_STATUS,

sizeof(cl_int), &eventStatus, NULL);

while (eventStatus > 0)

{
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error_ = clGetEventInfo(event, 
CL_EVENT_COMMAND_EXECUTION_STATUS,

sizeof(cl_int), &eventStatus, NULL);

Sleep(0);    // be nice to other threads, allow scheduler 
to find

 other work if possible

// Choose your favorite way to yield, SwitchToThread() 
for example,

in place of Sleep(0)

}

}

1.5.5 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on 
any device, peak performance for each device is typically obtained by tuning the 
OpenCL kernel for the target device.

Code optimized for the Tahiti device (the AMD Radeon™ HD 7970 GPU) typically 
runs well across other members of the Southern Islands family. 

CPUs and GPUs have very different performance characteristics, and some of 
these impact how one writes an optimal kernel. Notable differences include:

• The Vector ALU floating point resources in a CPU (SSE/AVX) require the use 
of vectorized types (such as float4) to enable packed SSE code generation 
and extract good performance from the Vector ALU hardware. The GPU 
Vector ALU hardware is more flexible and can efficiently use the floating-
point hardware; however, code that can use float4 often generates hi-quality 
code for both the CPU and the AMD GPUs.

• The AMD OpenCL CPU implementation runs work-items from the same 
work-group back-to-back on the same physical CPU core. For optimally 
coalesced memory patterns, a common access pattern for GPU-optimized 
algorithms is for work-items in the same wavefront to access memory 
locations from the same cache line. On a GPU, these work-items execute in 
parallel and generate a coalesced access pattern. On a CPU, the first work-
item runs to completion (or until hitting a barrier) before switching to the next. 
Generally, if the working set for the data used by a work-group fits in the CPU 
caches, this access pattern can work efficiently: the first work-item brings a 
line into the cache hierarchy, which the other work-items later hit. For large 
working-sets that exceed the capacity of the cache hierarchy, this access 
pattern does not work as efficiently; each work-item refetches cache lines 
that were already brought in by earlier work-items but were evicted from the 
cache hierarchy before being used. Note that AMD CPUs typically provide 
512 kB to 2 MB of L2+L3 cache for each compute unit.
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• CPUs do not contain any hardware resources specifically designed to 
accelerate local memory accesses. On a CPU, local memory is mapped to 
the same cacheable DRAM used for global memory, and there is no 
performance benefit from using the __local qualifier. The additional memory 
operations to write to LDS, and the associated barrier operations can reduce 
performance. One notable exception is when local memory is used to pack 
values to avoid non-coalesced memory patterns.

• CPU devices only support a small number of hardware threads, typically two 
to eight. Small numbers of active work-group sizes reduce the CPU switching 
overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers 
are encouraged to write the algorithm using float4 vectorization. The GPU is 
more sensitive to algorithm tuning; it also has higher peak performance potential. 
Thus, one strategy is to target optimizations to the GPU and aim for reasonable 
performance on the CPU. For peak performance on all devices, developers can 
choose to use conditional compilation for key code loops in the kernel, or in some 
cases even provide two separate kernels. Even with device-specific kernel 
optimizations, the surrounding host code for allocating memory, launching 
kernels, and interfacing with the rest of the program generally only needs to be 
written once.

Another approach is to leverage a CPU-targeted routine written in a standard 
high-level language, such as C++. In some cases, this code path may already 
exist for platforms that do not support an OpenCL device. The program uses 
OpenCL for GPU devices, and the standard routine for CPU devices. Load-
balancing between devices can still leverage the techniques described in 
Section 1.5.3, “Partitioning Work for Multiple Devices,” page 1-24.

1.5.6 Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can 
contain multiple devices. Thus, developers must choose whether to place all 
devices in the same context or create a new context for each device. Generally, 
it is easier to extend a context to support additional devices rather than 
duplicating the context for each device: buffers are allocated at the context level 
(and automatically across all devices), programs are associated with the context, 
and kernel compilation (via clBuildProgram) can easily be done for all devices 
in a context. However, with current OpenCL implementations, creating a separate 
context for each device provides more flexibility, especially in that buffer 
allocations can be targeted to occur on specific devices. Generally, placing the 
devices in the same context is the preferred solution.
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Chapter 2
OpenCL Performance and Optimiza-
tion for GCN Devices

This chapter discusses performance and optimization when programming for 
AMD GPU compute devices that are based on the Graphic Core Next (GCN) 
architecture (such as the Southern Islands, Sea Islands, and Volcanic Islands 
devices and Kabini APUs), as well as CPUs and multiple devices. Details specific 
to the Evergreen and Northern Islands families of GPUs are provided in 
Chapter 3, “OpenCL Performance and Optimization for Evergreen and Northern 
Islands Devices.”

2.1 Global Memory Optimization

The GPU consists of multiple compute units. Each compute unit (CU) contains 
local (on-chip) memory, L1 cache, registers, and four SIMDs. Each SIMD 
consists of 16 processing element (PEs). Individual work-items execute on a 
single processing element; one or more work-groups execute on a single 
compute unit. On a GPU, hardware schedules groups of work-items, called 
wavefronts, onto compute units; thus, work-items within a wavefront execute in 
lock-step; the same instruction is executed on different data.

Each compute unit contains 64 kB local memory, 16 kB of read/write L1 cache, 
four vector units, and one scalar unit. The maximum local memory allocation is 
32 kB per work-group. Each vector unit contains 512 scalar registers (SGPRs) 
for handling branching, constants, and other data constant across a wavefront. 
Vector units also contain 256 vector registers (VGPRs). VGPRs actually are 
scalar registers, but they are replicated across the whole wavefront. Vector units 
contain 16 processing elements (PEs). Each PE is scalar.

Since the L1 cache is 16 kB per compute unit, the total L1 cache size is 
16 kB * (# of compute units). For the AMD Radeon™ HD 7970, this means a total 
of 512 kB L1 cache. L1 bandwidth can be computed as:

L1 peak bandwidth = Compute Units * (4 threads/clock) * (128 bits per thread) * 
(1 byte / 8 bits) * Engine Clock

For the AMD Radeon HD 7970, this is ~1.9 TB/s.

If two memory access requests are directed to the same controller, the hardware 
serializes the access. This is called a channel conflict. Similarly, if two memory 
access requests go to the same memory bank, hardware serializes the access. 
This is called a bank conflict. From a developer’s point of view, there is not much 
difference between channel and bank conflicts. Often, a large power of two stride 
results in a channel conflict. The size of the power of two stride that causes a 
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specific type of conflict depends on the chip. A stride that results in a channel 
conflict on a machine with eight channels might result in a bank conflict on a 
machine with four.

In this document, the term bank conflict is used to refer to either kind of conflict.

Typically, reads and writes go through L1 and L2. As reads and writes go through 
L2 in addition to through L1, there is no complete path or fast path to worry about 
unlike in pre-GCN devices.

2.1.1 Channel Conflicts

The important concept is memory stride: the increment in memory address, 
measured in elements, between successive elements fetched or stored by 
consecutive work-items in a kernel. Many important kernels do not exclusively 
use simple stride one accessing patterns; instead, they feature large non-unit 
strides. For instance, many codes perform similar operations on each dimension 
of a two- or three-dimensional array. Performing computations on the low 
dimension can often be done with unit stride, but the strides of the computations 
in the other dimensions are typically large values. This can result in significantly 
degraded performance when the codes are ported unchanged to GPU systems. 
A CPU with caches presents the same problem, large power-of-two strides force 
data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the 
kernels. This allows all computations to be done at unit stride. Ensure that the 
time required for the transposition is relatively small compared to the time to 
perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is 
worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write 
adjacent memory addresses. This is one way to avoid channel conflicts. 

When the application has complete control of the access pattern and address 
generation, the developer must arrange the data structures to minimize bank 
conflicts. Accesses that differ in the lower bits can run in parallel; those that differ 
only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
R0 = *ptr ;

where the lower bits are all the same, the memory requests all access the same 
bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of 
2 (and larger than the channel interleave), the loop above only accesses one 
channel of memory. 
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The hardware byte address bits are: 

• On all AMD Radeon HD 79XX-series GPUs, there are 12 channels. A 
crossbar distributes the load to the appropriate memory channel. Each 
memory channel has a read/write global L2 cache, with 64 kB per channel. 
The cache line size is 64 bytes.

Because 12 channels are not a part of the power of two memory and bank 
channel addressing, this is not straightforward for the AMD Radeon HD 
79XX series. The memory channels are grouped in four quadrants, each 
which consisting of three channels. Bits 8, 9, and 10 of the address select a 
“virtual pipe.” The top two bits of this pipe select the quadrant; then, the 
channel within the quadrant is selected using the low bit of the pipe and the 
row and bank address modulo three, according to the following conditional 
equation.

 If (({ row, bank} %3) == 1)
       channel_within_quadrant =  1
  else
      channel_within_quadrant = 2 * pipe[0]

Figure 2.1 illustrates the memory channel mapping. 

31:x bank channel 7:0 address
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Figure 2.1 Channel Remapping/Interleaving

Note that an increase of the address by 2048 results in a 1/3 probability the 
same channel is hit; increasing the address by 256 results in a 1/6 probability 
the same channel is hit, etc.
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On AMD Radeon HD 78XX GPUs, the channel selection are bits 10:8 of the 
byte address. For the AMD Radeon HD 77XX, the channel selection are bits 
9:8 of the byte address. This means a linear burst switches channels every 256 
bytes. Since the wavefront size is 64, channel conflicts are avoided if each work-
item in a wave reads a different address from a 64-word region. All AMD 
Radeon HD 7XXX series GPUs have the same layout: channel ends at bit 8, 
and the memory bank is to the left of the channel.

For AMD Radeon HD 77XX and 78XX GPUs, a burst of 2 kB (# of channels * 
256 bytes) cycles through all the channels. 

For AMD Radeon HD 77XX and 78XX GPUs, when calculating an address as 
y*width+x, but reading a burst on a column (incrementing y), only one memory 
channel of the system is used, since the width is likely a multiple of 256 words 
= 2048 bytes. If the width is an odd multiple of 256B, then it cycles through all 
channels.

If every work-item in a work-group references consecutive memory addresses 
and the address of work-item 0 is aligned to 256 bytes and each work-item 
fetches 32 bits, the entire wavefront accesses one channel. Although this seems 
slow, it actually is a fast pattern because it is necessary to consider the memory 
access over the entire device, not just a single wavefront. 

One or more work-groups execute on each compute unit. On the AMD Radeon 
HD 7000-series GPUs, work-groups are dispatched in a linear order, with x 
changing most rapidly. For a single dimension, this is:

DispatchOrder = get_group_id(0)

For two dimensions, this is:

DispatchOrder = get_group_id(0) + get_group_id(1) * get_num_groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute 
units are in use, additional work-groups are assigned to compute units as 
needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single 
wavefront. In memory intensive kernels, it is likely that the instruction is a 
memory access. Since there are 12 channels on the AMD Radeon HD 7970 
GPU, at most 12 of the compute units can issue a memory access operation in 
one cycle. It is most efficient if the accesses from 12 wavefronts go to different 
channels. One way to achieve this is for each wavefront to access consecutive 
groups of 256 = 64 * 4 bytes. Note, as shown in Figure 2.1, fetching 256 * 12 
bytes in a row does not always cycle through all channels.

An inefficient access pattern is if each wavefront accesses all the channels. This 
is likely to happen if consecutive work-items access data that has a large power 
of two strides.

In the next example of a kernel for copying, the input and output buffers are 
interpreted as though they were 2D, and the work-group size is organized as 2D.
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The kernel code is:

#define WIDTH 1024
#define DATA_TYPE float
#define A(y , x ) A[ (y) * WIDTH + (x ) ] 
#define C(y , x ) C[ (y) * WIDTH+(x ) ]
kernel void copy_float (__global const

DATA_TYPE * A,
__global DATA_TYPE* C)

{
int idx = get_global_id(0);
int idy = get_global_id(1);
C(idy, idx) = A( idy, idx);

}

By changing the width, the data type and the work-group dimensions, we get a 
set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit 
address. Given a 1x64 work-group size, each work-item reads a value separated 
by the width in a power of two bytes.

To avoid power of two strides:

• Add an extra column to the data matrix.

• Change the work-group size so that it is not a power of 21.

• It is best to use a width that causes a rotation through all of the memory 
channels, instead of using the same one repeatedly.

• Change the kernel to access the matrix with a staggered offset.

2.1.1.1  Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data 
is processed in a different order. Unlike adding a column, this technique does not 
use extra space. It is also relatively simple to add to existing code.

Figure 2.2 illustrates the transformation to staggered offsets.

1. Generally, it is not a good idea to make the work-group size something other than an integer multiple 
of the wavefront size, but that usually is less important than avoiding channel conflicts.
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Figure 2.2 Transformation to Staggered Offsets

The global ID values reflect the order that the hardware initiates work-groups. 
The values of get group ID are in ascending launch order.

global_id(0) = get_group_id(0) * get_local_size(0) + get_local_id(0)
global_id(1) = get_group_id(1) * get_local_size(1) + get_local_id(1)

The hardware launch order is fixed, but it is possible to change the launch order, 
as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D 
matrix of size 2n x 2m in row-major order. If each work-group must process a 
block in column-order, the launch order does not work out correctly: consecutive 
work-groups execute down the columns, and the columns are a large power-of-
two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid 
channel conflicts. Since we are executing 2D work-groups, each work group is 
identified by four numbers.

1. get_group_id(0) - the x coordinate or the block within the column of the 
matrix.

2. get_group_id(1) - the y coordinate or the block within the row of the matrix.

3. get_global_id(0) - the x coordinate or the column of the matrix.

4. get_global_id(1) - the y coordinate or the row of the matrix.
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To transform the code, add the following four lines to the top of the kernel.

get_group_id_0 = get_group_id(0);
get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void 
copy_float (
__global const DATA_TYPE * A,
__global DATA_TYPE * C)

{
size_t get_group_id_0 = get_group_id(0);
size_t get_group_id_1 = (get_group_id(0) + get_group_id(1)) %

get_local_size(0);
      
size_t get_global_id_0 = get_group_id_0 * get_local_size(0) +

get_local_id(0);
size_t get_global_id_1 = get_group_id_1 * get_local_size(1) +

get_local_id(1);
      
int idx = get_global_id_0; //changed to staggered form
int idy = get_global_id_1; //changed to staggered form

C(idy , idx) = A( idy , idx);
}

2.1.1.2  Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that 
reading from the same address is a conflict, even on the FastPath.

This does not happen on the read-only memories, such as constant buffers, 
textures, or shader resource view (SRV); but it is possible on the read/write UAV 
memory or OpenCL global memory. 

From a hardware standpoint, reads from a fixed address have the same upper 
bits, so they collide and are serialized. To read in a single value, read the value 
in a single work-item, place it in local memory, and then use that location:

Avoid:
temp = input[3] // if input is from global space

Use:
if (get_local_id(0) == 0) {
local = input[3]

}
barrier(CLK_LOCAL_MEM_FENCE);

temp = local

2.1.2 Coalesced Writes

Southern Island devices do not support coalesced writes; however, continuous 
addresses within work-groups provide maximum performance.

Each compute unit accesses the memory system in quarter-wavefront units. The 
compute unit transfers a 32-bit address and one element-sized piece of data for 
each work-item. This results in a total of 16 elements + 16 addresses per quarter-
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wavefront. On GCN-based devices, processing quarter-wavefront requires two 
cycles before the data is transferred to the memory controller.

2.2 Local Memory (LDS) Optimization

AMD GCN-family GPUs include a Local Data Store (LDS) cache, which 
accelerates local memory accesses. LDS provides high-bandwidth access (more 
than 10X higher than global memory), efficient data transfers between work-items 
in a work-group, and high-performance atomic support. LDS is much faster than 
L1 cache access as it has twice the peak bandwidth and far lower latency. 
Additionally, using LDS memory can reduce global memory bandwidth usage. 
Local memory offers significant advantages when the data is re-used; for 
example, subsequent accesses can read from local memory, thus reducing 
global memory bandwidth. Another advantage is that local memory does not 
require coalescing.

To determine local memory size:

clGetDeviceInfo( …, CL_DEVICE_LOCAL_MEM_SIZE, … );

All AMD Southern Islands, Sea Islands, and Volcanic Islands GPUs (collectively 
referred to as GCN devices) contain a 64 kB LDS for each compute unit; 
although only 32 kB can be allocated per work-group. The LDS contains 32-
banks, each bank is four bytes wide and 256 bytes deep; the bank address is 
determined by bits 6:2 in the address. As shown below, programmers must 
carefully control the bank bits to avoid bank conflicts as much as possible. Bank 
conflicts are determined by what addresses are accessed on each half wavefront 
boundary. Threads 0 through 31 are checked for conflicts as are threads 32 
through 63 within a wavefront. 

In a single cycle, local memory can service a request for each bank (up to 32 
accesses each cycle on the AMD Radeon HD 7970 GPU). For an AMD 
Radeon HD 7970 GPU, this delivers a memory bandwidth of over 100 GB/s for 
each compute unit, and more than 3.5 TB/s for the whole chip. This is more than 
14X the global memory bandwidth. However, accesses that map to the same 
bank are serialized and serviced on consecutive cycles. LDS operations do not 
stall; however, the compiler inserts wait operations prior to issuing operations that 
depend on the results. A wavefront that generated bank conflicts does not stall 
implicitly, but may stall explicitly in the kernel if the compiler has inserted a wait 
command for the outstanding memory access. The GPU reprocesses the 
wavefront on subsequent cycles, enabling only the lanes receiving data, until all 
the conflicting accesses complete. The bank with the most conflicting accesses 
determines the latency for the wavefront to complete the local memory operation. 
The worst case occurs when all 64 work-items map to the same bank, since each 
access then is serviced at a rate of one per clock cycle; this case takes 64 cycles 
to complete the local memory access for the wavefront. A program with a large 
number of bank conflicts (as measured by the LDSBankConflict performance 
counter in the CodeXL GPU Profiler statistics) might benefit from using the 
constant or image memory rather than LDS. 
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Thus, the key to effectively using the LDS is to control the access pattern, so that 
accesses generated on the same cycle map to different banks in the LDS. One 
notable exception is that accesses to the same address (even though they have 
the same bits 6:2) can be broadcast to all requestors and do not generate a bank 
conflict. The LDS hardware examines the requests generated over two cycles (32 
work-items of execution) for bank conflicts. Ensure, as much as possible, that the 
memory requests generated from a quarter-wavefront avoid bank conflicts by 
using unique address bits 6:2. A simple sequential address pattern, where each 
work-item reads a float2 value from LDS, generates a conflict-free access pattern 
on the AMD Radeon HD 7XXX GPU. Note that a sequential access pattern, 
where each work-item reads a float4 value from LDS, uses only half the banks 
on each cycle on the AMD Radeon HD 7XXX GPU and delivers half the 
performance of the float access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle. 

Byte and short reads consume four bytes of LDS bandwidth. Developers can use 

the large register file: each compute unit has 256 kB of register space available 

(8X the LDS size) and can provide up to twelve 4-byte values/cycle (6X the LDS 

bandwidth). Registers do not offer the same indexing flexibility as does the LDS, 
but for some algorithms this can be overcome with loop unrolling and explicit 
addressing. 

LDS reads require one ALU operation to initiate them. Each operation can initiate 
two loads of up to four bytes each. 

The CodeXL GPU Profiler provides the following performance counter to help 
optimize local memory usage:

LDSBankConflict: The percentage of time accesses to the LDS are stalled 
due to bank conflicts relative to GPU Time. In the ideal case, there are no 
bank conflicts in the local memory access, and this number is zero. 

Local memory is software-controlled “scratchpad” memory. In contrast, caches 

typically used on CPUs monitor the access stream and automatically capture 

recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly 

load items into the memory; they exist in local memory until the kernel replaces 
them, or until the work-group ends. To declare a block of local memory, use the 
__local keyword; for example:
__local float localBuffer[64]

These declarations can be either in the parameters to the kernel call or in the 
body of the kernel. The __local syntax allocates a single block of memory, which 
is shared across all work-items in the workgroup. 

To write data into local memory, write it into an array allocated with __local. For 
example:

localBuffer[i] = 5.0;
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A typical access pattern is for each work-item to collaboratively write to the local 
memory: each work-item writes a subsection, and as the work-items execute in 
parallel they write the entire array. Combined with proper consideration for the 
access pattern and bank alignment, these collaborative write approaches can 
lead to highly efficient memory accessing.

The following example is a simple kernel section that collaboratively writes, then 
reads from, local memory:

__kernel void localMemoryExample (__global float *In, __global float *Out) {
__local float localBuffer[64];
uint tx = get_local_id(0);
uint gx = get_global_id(0);

// Initialize local memory:
// Copy from this work-group’s section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];  

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE); 

// Toy computation to compute a partial factorial, shows re-use from local
float f = localBuffer[tx];
for (uint i=tx+1; i<64; i++) {
f *= localBuffer[i]; 
}
Out[gx] = f;
}
 

Note the host code cannot read from, or write to, local memory. Only the kernel 
can access local memory.

Local memory is consistent across work-items only at a work-group barrier; thus, 
before reading the values written collaboratively, the kernel must include a 
barrier() instruction. An important optimization is the case where the local 
work-group size is less than, or equal to, the wavefront size. Because the 
wavefront executes as an atomic unit, the explicit barrier operation is not 
required. The compiler automatically removes these barriers if the kernel 
specifies a reqd_work_group_size (see section 5.8 of the OpenCL 
Specification) that is less than the wavefront size. Developers are strongly 
encouraged to include the barriers where appropriate, and rely on the compiler 
to remove the barriers when possible, rather than manually removing the 
barriers(). This technique results in more portable code, including the ability to 
run kernels on CPU devices.

2.3 Constant Memory Optimization

Constants (data from read-only buffers shared by a wavefront) are loaded to 
SGPRs from memory through the L1 (and L2) cache using scalar memory read 
instructions. The scalar instructions can use up to two SGPR sources per cycle; 
vector instructions can use one SGPR source per cycle. (There are 512 SGPRs 
per SIMD, 4 SIMDs per CU; so a 32 CU configuration like Tahiti has 256 kB of 
SGPRs.)
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GCN hardware supports specific inline literal constants. These constants are 
“free” in that they do not increase code size:

0 
integers 1.. 64 
integers -1 .. -16 
0.5 single or double floats
-0.5
1.0 
-1.0
2.0
-2.0 
4.0
-4.0 

Any other literal constant increases the code size by at least 32 bits.

The AMD implementation of OpenCL provides three levels of performance for the 
“constant” memory type.

1. Simple Direct-Addressing Patterns

Very high bandwidth can be attained when the compiler has available the 
constant address at compile time and can embed the constant address into 
the instruction. Each processing element can load up to 4x4-byte direct-
addressed constant values each cycle. Typically, these cases are limited to 
simple non-array constants and function parameters. The executing kernel 
loads the constants into scalar registers and concurrently populates the 
constant cache. The constant cache is a tagged cache. Typically each 16 8k 
cache is shared among four compute units. If the constant data is already 
present in the constant cache, the load is serviced by the cache and does 
not require any global memory bandwidth. The constant cache size varies 
from 4k to 48k per GPU.

2. Same Index

Hardware acceleration also takes place when all work-items in a wavefront 
reference the same constant address. In this case, the data is loaded from 
memory one time, stored in the L1 cache, and then broadcast to all wave-
fronts. This can reduce significantly the required memory bandwidth.

3. Varying Index

More sophisticated addressing patterns, including the case where each work-
item accesses different indices, are not hardware accelerated and deliver the 
same performance as a global memory read with the potential for cache hits.

To further improve the performance of the AMD OpenCL stack, two methods 
allow users to take advantage of hardware constant buffers. These are: 

1. Globally scoped constant arrays. These arrays are initialized, globally 
scoped, and in the constant address space (as specified in section 6.5.3 of 
the OpenCL specification). If the size of an array is below 64 kB, it is placed 
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in hardware constant buffers; otherwise, it uses global memory. An example 
of this is a lookup table for math functions.

2. Per-pointer attribute specifying the maximum pointer size. This is specified 
using the max_constant_size(N) attribute. The attribute form conforms to 
section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to 
top-level kernel function arguments in the constant address space. This 
restriction prevents a pointer of one size from being passed as an argument 
to a function that declares a different size. It informs the compiler that indices 
into the pointer remain inside this range and it is safe to allocate a constant 
buffer in hardware, if it fits. Using a constant pointer that goes outside of this 
range results in undefined behavior. All allocations are aligned on the 16-byte 
boundary. For example:

kernel void mykernel(global int* a,
constant int* b __attribute__((max_constant_size (65536))) 
)
{
size_t idx = get_global_id(0);
a[idx] = b[idx & 0x3FFF];
}

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to 
query the device for the maximum number of constant buffers the kernel can 
support. This value might differ from the maximum number of hardware constant 
buffers available. In this case, if the number of hardware constant buffers is less 
than the CL_DEVICE_MAX_CONSTANT_ARGS, the compiler allocates the largest 
constant buffers in hardware first and allocates the rest of the constant buffers in 
global memory. As an optimization, if a constant pointer A uses n bytes of 
memory, where n is less than 64 kB, and constant pointer B uses m bytes of 
memory, where m is less than (64 kB – n) bytes of memory, the compiler can 
allocate the constant buffer pointers in a single hardware constant buffer. This 
optimization can be applied recursively by treating the resulting allocation as a 
single allocation and finding the next smallest constant pointer that fits within the 
space left in the constant buffer. 

2.4 OpenCL Memory Resources: Capacity and Performance

Table 2.1 summarizes the hardware capacity and associated performance for the 
structures associated with the five OpenCL Memory Types. This information 
specific to the AMD Radeon HD 7970 GPUs with 3 GB video memory. 

Table 2.1 Hardware Performance Parameters

OpenCL 
Memory Type Hardware Resource Size/CU Size/GPU

Peak Read 
Bandwidth/ Stream 

Core

Private GPRs 256k 8192k 12 bytes/cycle

Local LDS 64k 2048k 8 bytes/cycle

Constant Direct-addressed constant 48k 4 bytes/cycle

Same-indexed constant 4 bytes/cycle

Varying-indexed constant ~0.14 bytes/cycle
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The compiler tries to map private memory allocations to the pool of GPRs in the 
GPU. In the event GPRs are not available, private memory is mapped to the 
“scratch” region, which has the same performance as global memory. 
Section 2.6.2, “Resource Limits on Active Wavefronts,” page 2-17, has more 
information on register allocation and identifying when the compiler uses the 
scratch region. GPRs provide the highest-bandwidth access of any hardware 
resource. In addition to reading up to 12 bytes/cycle per processing element from 
the register file, the hardware can access results produced in the previous cycle 
without consuming any register file bandwidth.

Same-indexed constants can be cached in the L1 and L2 cache. Note that 
“same-indexed” refers to the case where all work-items in the wavefront 
reference the same constant index on the same cycle. The performance shown 
assumes an L1 cache hit. 

Varying-indexed constants, which are cached only in L2, use the same path as 
global memory access and are subject to the same bank and alignment 
constraints described in Section 2.1, “Global Memory Optimization,” page 2-1.

The L1 and L2 read/write caches are constantly enabled. Read only buffers can 
be cached in L1 and L2. 

The L1 cache can service up to four address requests per cycle, each delivering 
up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes; 
smaller access sizes/requests result in a lower peak bandwidth for the L1 cache. 
Using float4 with images increases the request size and can deliver higher L1 
cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to 
64 bytes/cycle. The AMD Radeon HD 7970 GPU has 12 memory channels; 
thus, it can deliver up to 768 bytes/cycle; divided among 2048 stream cores, this 
provides up to ~0.4 bytes/cycle for each stream core.

Global Memory bandwidth is limited by external pins, not internal bus bandwidth. 
The AMD Radeon HD 7970 GPU supports up to 264 GB/s of memory 
bandwidth which is an average of 0.14 bytes/cycle for each stream core.

Note that Table 2.1 shows the performance for the AMD Radeon HD 7970 
GPU. The “Size/Compute Unit” column and many of the bandwidths/processing 
element apply to all Southern Islands-class GPUs; however, the “Size/GPU” 
column and the bandwidths for varying-indexed constant, L2, and global memory 
vary across different GPU devices. 

Images L1 Cache 16k 512k1 1 bytes/cycle

L2 Cache 7682k ~0.4 bytes/cycle

Global Memory 3G ~0.14 bytes/cycle

1. Applies to images and buffers.
2. Applies to images and buffers.
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2.5 Using LDS or L1 Cache

There are a number of considerations when deciding between LDS and L1 cache 
for a given algorithm.

LDS supports read/modify/write operations, as well as atomics. It is well-suited 
for code that requires fast read/write, read/modify/write, or scatter operations that 
otherwise are directed to global memory. On current AMD hardware, L1 is part 
of the read path; hence, it is suited to cache-read-sensitive algorithms, such as 
matrix multiplication or convolution.

LDS is typically larger than L1 (for example: 64 kB vs 16 kB on Southern Islands 
devices). If it is not possible to obtain a high L1 cache hit rate for an algorithm, 
the larger LDS size can help. On the AMD Radeon HD 7970 device, the 
theoretical LDS peak bandwidth is 3.8 TB/s, compared to L1 at 1.9 TB/sec.

The native data type for L1 is a four-vector of 32-bit words. On L1, fill and read 
addressing are linked. It is important that L1 is initially filled from global memory 
with a coalesced access pattern; once filled, random accesses come at no extra 
processing cost. 

Currently, the native format of LDS is a 32-bit word. The theoretical LDS peak 
bandwidth is achieved when each thread operates on a two-vector of 32-bit 
words (16 threads per clock operate on 32 banks). If an algorithm requires 
coalesced 32-bit quantities, it maps well to LDS. The use of four-vectors or larger 
can lead to bank conflicts, although the compiler can mitigate some of these. 

From an application point of view, filling LDS from global memory, and reading 
from it, are independent operations that can use independent addressing. Thus, 
LDS can be used to explicitly convert a scattered access pattern to a coalesced 
pattern for read and write to global memory. Or, by taking advantage of the LDS 
read broadcast feature, LDS can be filled with a coalesced pattern from global 
memory, followed by all threads iterating through the same LDS words 
simultaneously.

LDS reuses the data already pulled into cache by other wavefronts. Sharing 
across work-groups is not possible because OpenCL does not guarantee that 
LDS is in a particular state at the beginning of work-group execution. L1 content, 
on the other hand, is independent of work-group execution, so that successive 
work-groups can share the content in the L1 cache of a given Vector ALU. 
However, it currently is not possible to explicitly control L1 sharing across work-
groups.

The use of LDS is linked to GPR usage and wavefront-per-Vector ALU count. 
Better sharing efficiency requires a larger work-group, so that more work-items 
share the same LDS. Compiling kernels for larger work-groups typically results 
in increased register use, so that fewer wavefronts can be scheduled 
simultaneously per Vector ALU. This, in turn, reduces memory latency hiding. 
Requesting larger amounts of LDS per work-group results in fewer wavefronts 
per Vector ALU, with the same effect.
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LDS typically involves the use of barriers, with a potential performance impact. 
This is true even for read-only use cases, as LDS must be explicitly filled in from 
global memory (after which a barrier is required before reads can commence).

2.6 NDRange and Execution Range Optimization

Probably the most effective way to exploit the potential performance of the GPU 
is to provide enough threads to keep the device completely busy. The 
programmer specifies a three-dimensional NDRange over which to execute the 
kernel; bigger problems with larger NDRanges certainly help to more effectively 
use the machine. The programmer also controls how the global NDRange is 
divided into local ranges, as well as how much work is done in each work-item, 
and which resources (registers and local memory) are used by the kernel. All of 
these can play a role in how the work is balanced across the machine and how 
well it is used. This section introduces the concept of latency hiding, how many 
wavefronts are required to hide latency on AMD GPUs, how the resource usage 
in the kernel can impact the active wavefronts, and how to choose appropriate 
global and local work-group dimensions.

2.6.1 Hiding Memory Latency with ALU Operations

The read-after-write latency for most arithmetic operations (a floating-point add, 
for example) is only four cycles. For most Southern Island devices, each CU can 
execute 64 vector ALU instructions per cycle, 16 per wavefront. Also, a wavefront 
can issue a scalar ALU instruction every four cycles. To achieve peak ALU 
power, a minimum of four wavefronts must be scheduled for each CU.

Global memory reads generate a reference to the off-chip memory and 
experience a latency of 300 to 600 cycles. The wavefront that generates the 
global memory access is made idle until the memory request completes. During 
this time, the compute unit can process other independent wavefronts, if they are 
available.

Kernel execution time also plays a role in hiding memory latency: longer chains 
of ALU instructions keep the functional units busy and effectively hide more 
latency. To better understand this concept, consider a global memory access 
which takes 400 cycles to execute. Assume the compute unit contains many 
other wavefronts, each of which performs five ALU instructions before generating 
another global memory reference. As discussed previously, the hardware 
executes each instruction in the wavefront in four cycles; thus, all five instructions 
occupy the ALU for 20 cycles. Note the compute unit interleaves two of these 
wavefronts and executes the five instructions from both wavefronts (10 total 
instructions) in 40 cycles. To fully hide the 400 cycles of latency, the compute unit 
requires (400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront 
contains 10 instructions rather than 5, the wavefront pair would consume 80 
cycles of latency, and only 10 wavefronts would be required to hide the 400 
cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the 
available wavefronts, and thus it is not useful to try to predict exactly which ALU 
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block executes when trying to hide latency. Instead, consider the overall ratio of 
ALU operations to fetch operations – this metric is reported by the CodeXL GPU 
Profiler in the ALUFetchRatio counter. Each ALU operation keeps the compute 
unit busy for four cycles, so you can roughly divide 500 cycles of latency by 
(4*ALUFetchRatio) to determine how many wavefronts must be in-flight to hide 
that latency. Additionally, a low value for the ALUBusy performance counter can 
indicate that the compute unit is not providing enough wavefronts to keep the 
execution resources in full use. (This counter also can be low if the kernel 
exhausts the available DRAM bandwidth. In this case, generating more 
wavefronts does not improve performance; it can reduce performance by creating 
more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve 
performance; once the GPU has enough wavefronts to hide latency, additional 
active wavefronts provide little or no performance benefit. A closely related metric 
to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active 
wavefronts to the maximum number of possible wavefronts supported by the 
hardware. Many of the important optimization targets and resource limits are 
expressed in wavefronts/compute units, so this section uses this metric rather 
than the related “occupancy” term.

2.6.2 Resource Limits on Active Wavefronts 

AMD GPUs have two important global resource constraints that limit the number 
of in-flight wavefronts:

• Southern Islands devices support a maximum of 16 work-groups per CU if a 
work-group is larger than one wavefront.

• The maximum number of wavefronts that can be scheduled to a CU is 40, 
or 10 per Vector Unit. 

These limits are largely properties of the hardware and, thus, difficult for 
developers to control directly. Fortunately, these are relatively generous limits. 
Frequently, the register and LDS usage in the kernel determines the limit on the 
number of active wavefronts/compute unit, and these can be controlled by the 
developer. 

2.6.2.1  GPU Registers

Southern Islands registers are scalar, so each is 32-bits. Each wavefront can 
have at most 256 registers (VGPRs). To compute the number of wavefronts per 
CU, take (256/# registers)*4.

For example, a kernel that uses 120 registers (120x32-bit values) can run with 
eight active wavefronts on each compute unit. Because of the global limits 
described earlier, each compute unit is limited to 40 wavefronts; thus, kernels can 
use up to 25 registers (25x32-bit values) without affecting the number of 
wavefronts/compute unit.

AMD provides the following tools to examine the number of general-purpose 
registers (GPRs) used by the kernel.
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• The CodeXL GPU Profiler displays the number of GPRs used by the kernel. 

• Alternatively, the CodeXL GPU Profiler generates the ISA dump , which then 
can be searched for the string :NUM_GPRS.

• The AMD CodeXL Analysis Mode shows the GPR used by the kernel, across 
a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it 
cannot fit all the live values into registers. Spill code uses long-latency global 
memory and can have a large impact on performance. Spilled registers can be 
cached in Southern Island devices, thus reducing the impact on performance. 
The CodeXL GPU Profiler reports the static number of register spills in the 
ScratchReg field. Generally, it is a good idea to re-write the algorithm to use 
fewer GPRs, or tune the work-group dimensions specified at launch time to 
expose more registers/kernel to the compiler, in order to reduce the scratch 
register usage to 0.

2.6.2.2  Specifying the Default Work-Group Size at Compile-Time

The number of registers used by a work-item is determined by the compiler on 
compile time. The user later specifies the size of the work-group. Ideally, the 
OpenCL compiler knows the size of the work-group at compile-time, so it can 
make optimal register allocation decisions. Without knowing the work-group size, 
the compiler must assume an upper-bound size to avoid allocating more registers 
in the work-item than the hardware actually contains.

OpenCL provides a mechanism to specify a work-group size that the compiler 
can use to optimize the register allocation. In particular, specifying a smaller 
work-group size at compile time allows the compiler to allocate more registers 
for each kernel, which can avoid spill code and improve performance. The kernel 
attribute syntax is:

__attribute__((reqd_work_group_size(X, Y, Z)))

Section 6.7.2 of the OpenCL specification explains the attribute in more detail.

2.6.2.3  Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active 
wavefronts/compute unit. Each compute unit has 64 kB of LDS, which is shared 
among all active work-groups. Note that the maximum allocation size is 32 kB. 
LDS is allocated on a per-work-group granularity, so it is possible (and useful) 
for multiple wavefronts to share the same local memory allocation. However, 
large LDS allocations eventually limits the number of workgroups that can be 
active. Table 2.2 provides more details about how LDS usage can impact the 
wavefronts/compute unit. 
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Table 2.2 Effect of LDS Usage on Wavefronts/CU1 

1. Assumes each work-group uses four wavefronts (the maximum supported by the AMD 
OpenCL SDK).

AMD provides the following tools to examine the amount of LDS used by the 
kernel:

• The CodeXL GPU Profiler displays the LDS usage. See the LocalMem 
counter.

• Alternatively, use the CodeXL GPU Profiler to generate the ISA dump , then 
search for the string SQ_LDS_ALLOC:SIZE in the ISA dump. Note that the 
value is shown in hexadecimal format.

2.6.3 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global 
NDRange. The partition of the NDRange can have a significant impact on 
performance; thus, it is recommended that the developer explicitly specify the 
global (#work-groups) and local (#work-items/work-group) dimensions, rather 
than rely on OpenCL to set these automatically (by setting local_work_size to 

Local Memory 
/  Work-Group

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 4 
Wavefronts/ 
Work-Group)

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 3 
Wavefronts/ 
Work-Group)

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 2 
Wavefronts/ 
Work-Group)

LDS-Limited 
Wavefronts / 

Compute Unit 
(Assume 1 
Wavefront / 

Work-Group)

<=4K 40 40 32 16

4.0K-4.2K 40 40 30 15

4.2K-4.5K 40 40 28 14

4.5K-4.9K 40 39 26 13

4.9K-5.3K 40 36 24 12

5.3K-5.8K 40 33 22 11

5.8K-6.4K 40 30 20 10

6.4K-7.1K 36 27 18 9

7.1K-8.0K 32 24 16 8

8.0K-9.1K 28 21 14 7

9.1K-10.6K 24 18 12 6

10.6K-12.8K 20 15 10 5

12.8K-16.0K 16 12 8 4

16.0K-21.3K 12 9 6 3

21.3K-32.0K 8 6 4 2
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NULL in clEnqueueNDRangeKernel). This section explains the guidelines for 
partitioning at the global, local, and work/kernel levels.

2.6.3.1  Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted 
with a clEnqueueNDRangeKernel command. The hardware limits the available in-
flight threads, but the OpenCL SDK automatically partitions a large number of 
work-groups into smaller pieces that the hardware can process. For some large 
workloads, the amount of memory available to the GPU can be a limitation; the 
problem might require so much memory capacity that the GPU cannot hold it all. 
In these cases, the programmer must partition the workload into multiple 
clEnqueueNDRangeKernel commands. The available device memory can be 
obtained by querying clDeviceInfo. 

At a minimum, ensure that the workload contains at least as many work-groups 
as the number of compute units in the hardware. Work-groups cannot be split 
across multiple compute units, so if the number of work-groups is less than the 
available compute units, some units are idle. Use 
clGetDeviceInfo(…CL_DEVICE_MAX_COMPUTE_UNITS) to determine the value 
dynamically. 

2.6.3.2  Local Work Size (#Work-Items per Work-Group)

OpenCL limits the number of work-items in each group. Call clDeviceInfo with 
the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of 
work-groups supported by the hardware. The latest generation AMD GPUs 
support a maximum of 256 work-items per work-group. Note the number of work-
items is the product of all work-group dimensions; for example, a work-group with 
dimensions 32x16 requires 512 work-items, which is not allowed with the current 
AMD OpenCL runtime. 

The fundamental unit of work on AMD GPUs is called a wavefront. Each 
wavefront consists of 64 work-items; thus, the optimal local work size is an 
integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work-
group.

Work-items in the same work-group can share data through LDS memory and 
also use high-speed local atomic operations. Thus, larger work-groups enable 
more work-items to efficiently share data, which can reduce the amount of slower 
global communication. However, larger work-groups reduce the number of global 
work-groups, which, for small workloads, could result in idle compute units. 
Generally, larger work-groups are better as long as the global range is big 
enough to provide 1-2 Work-Groups for each compute unit in the system; for 
small workloads it generally works best to reduce the work-group size in order to 
avoid idle compute units. Note that it is possible to make the decision 
dynamically, when the kernel is launched, based on the launch dimensions and 
the target device characteristics.
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2.6.3.3  Work-Group Dimensions vs Size

The local NDRange can contain up to three dimensions, here labeled X, Y, and 
Z. The X dimension is returned by get_local_id(0), Y is returned by 
get_local_id(1), and Z is returned by get_local_id(2). The GPU hardware 
schedules the kernels so that the X dimension moves fastest as the work-items 
are packed into wavefronts. For example, the 128 threads in a 2D work-group of 
dimension 32x4 (X=32 and Y=4) are packed into two wavefronts as follows 
(notation shown in X,Y order).

The total number of work-items in the work-group is typically the most important 
parameter to consider, in particular when optimizing to hide latency by increasing 
wavefronts/compute unit. However, the choice of XYZ dimensions for the same 
overall work-group size can have the following second-order effects.

• Work-items in the same quarter-wavefront execute on the same cycle in the 
processing engine. Thus, global memory coalescing and local memory bank 
conflicts can be impacted by dimension, particularly if the fast-moving X 
dimension is small. Typically, it is best to choose an X dimension of at least 
16, then optimize the memory patterns for a block of 16 work-items which 
differ by 1 in the X dimension.

• Work-items in the same wavefront have the same program counter and 
execute the same instruction on each cycle. The packing order can be 
important if the kernel contains divergent branches. If possible, pack together 
work-items that are likely to follow the same direction when control-flow is 
encountered. For example, consider an image-processing kernel where each 
work-item processes one pixel, and the control-flow depends on the color of 
the pixel. It might be more likely that a square of 8x8 pixels is the same color 
than a 64x1 strip; thus, the 8x8 would see less divergence and higher 
performance.

• When in doubt, a square 16x16 work-group size is a good start.

2.6.4 Summary of NDRange Optimizations

As shown above, execution range optimization is a complex topic with many 
interacting variables and which frequently requires some experimentation to 
determine the optimal values. Some general guidelines are:

WaveFront0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

16,1 17,1 18,1 19,1 20,1 21,1 22,1 23,1 24,1 25,1 26,1 27,1 28,1 29,1 30,1 31,1

WaveFront1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

16,2 17,2 18,2 19,2 20,2 21,2 22,2 23,2 24,2 25,2 26,2 27,2 28,2 29,2 30,2 31,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

16,3 17,3 18,3 19,3 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3 30,3 31,3
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• Select the work-group size to be a multiple of 64, so that the wavefronts are 
fully populated.

• Schedule at least four wavefronts per compute unit. 

• Latency hiding depends on both the number of wavefronts/compute unit, as 
well as the execution time for each kernel. Generally, 8 to 32 
wavefronts/compute unit is desirable, but this can vary significantly, 
depending on the complexity of the kernel and the available memory 
bandwidth. The CodeXL GPU Profiler and associated performance counters 
can help to select an optimal value.

2.7 Instruction Selection Optimizations

2.7.1 Instruction Bandwidths

Table 2.3 lists the throughput of instructions for GPUs.

Table 2.3 Instruction Throughput (Operations/Cycle for Each Processing 
Element (ALU)) 

Rate (Operations/Cycle) for each Processing Element (ALU)

Instruction
One Quarter-Double-

Precision-Speed Devices

 One Half-Double-
Precision-Speed 

Devices (e.g. Tahiti, 
Cayman, Cypress)

Double-Precision-
Speed-Devices 

(e.g. AMD FirePro 
9100)

Single Precision
FP Rates

SPFP FMA 1/16 1 1

SPFP MAD 1 1 1

ADD 1 1 1

MUL 1 1 1

INV 1/4 1/4 1/2

RQSRT 1/4 1/4 1/2

LOG 1/4 1/4 1/2

Double Precision
FP Rates

FMA 1/16 1/4 1/2

MAD 1/16 1/4 1/4

ADD 1/8 1/2 1

MUL 1/16 1/4 1/2

INV (approx.) 1/16 1/4 1/2

RQSRT (approx.) 1/16 1/4 1/2

Integer
Instruction

Rates

MAD 1/4 1/4 1/4

ADD 1 1 1

MUL 1/4 1/4 1/2

Bit-shift 1 1 1

Bitwise XOR 1 1 1

Conversion
Float-to-Int 1/4 1/4 1/2

Int-to-Float 1/4 1/4 1/2
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Double-precision is supported on all GCN family devices at varying rates. The 
use of single-precision calculation is encouraged, if that precision is acceptable. 
Single-precision data is also half the size of double-precision, which requires less 
chip bandwidth and is not as demanding on the cache structures.

Generally, the throughput and latency for 32-bit integer operations is the same 
as for single-precision floating point operations. 

24-bit integer MULs and MADs have four times the throughput of 32-bit integer 
multiplies. 24-bit signed and unsigned integers are natively supported on the 
GCN family of devices. The use of OpenCL built-in functions for mul24 and mad24 
is encouraged. Note that mul24 can be useful for array indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases 
where it is known that no overflow will occur, some algorithms may be able to 
effectively pack 2 to 4 values into the 32-bit registers natively supported by the 
hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE-
compliant add; it has the same accuracy as two separate MUL/ADD operations. 
No special compiler flags are required for the compiler to convert separate 
MUL/ADD operations to use the MAD instruction.

Table 2.3 shows the throughput for each processing element. To obtain the peak 
throughput for the whole device, multiply the value in the table with the number 
of processing elements and the engine clock. For example, according to 
Table 2.3, an AMD Tahiti device can perform one double-precision ADD 
operations/2 cycles in each processing element. An AMD Radeon HD 7970 
GPU has 2048 processing elements and an engine clock of 925 MHz, so the 
entire GPU has a throughput rate of (.5*2048*925 MHz) = 947 GFlops for double-
precision adds.

Similarly, double-precision MADs on AMD Tahiti (including the AMD HD 79XX 
and the AMD R9 280 products) run at 1/4 rate. Double-precision MADs on AMD 
Hawaii have two rates: 1/2 rate for the AMD FirePro 9100 devices, and 1/8th rate 
for the non-FirePro AMD devices (AMD R9 290 for example). Double-precision 
MADs on the other GCN devices typically run at 1/16 rate.

In general, the rate for double-precision ADD operations is double the rate for 
double-precision MAD or FMA operations.

For information about the device parameters for some Southern Islands devices, 
see 2.10, “Device Parameters for Southern Islands Devices”.

24-Bit Integer
Inst Rates

MAD 1 1 1

ADD 1 1 1

MUL 1 1 1
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2.7.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing. 
Notably, the sum-of-absolute differences (SAD) operation is widely used in 
motion estimation algorithms. For the Southern Islands family of devices, new 
media instructions have been added; these are available under the 
cl_amd_media_ops2 extensions.

2.7.3 Math Libraries

The GCN environment contains new instructions for increasing the previous 
performance of floating point division, trigonometric range reduction, certain type 
conversions with double-precision values, floating-point classification, and 
frexp/ldexp.

OpenCL supports two types of math library operation: native_function() and 
function(). Native_functions are generally supported in hardware and can run 
substantially faster, although at somewhat lower accuracy. The accuracy for the 
non-native functions is specified in section 7.4 of the OpenCL Specification. The 
accuracy for the native functions is implementation-defined. Developers are 
encouraged to use the native functions when performance is more important than 
accuracy. 

Compared to previous families of GPUs, the accuracy of certain native functions 
is increased in the Southern Islands family. We recommend retesting applications 
where native function accuracy was insufficient on previous GPU devices.

2.7.4 Compiler Optimizations

The OpenCL compiler currently recognizes a few patterns and transforms them 
into a single instruction. By following these patterns, a developer can generate 
highly efficient code. The currently accepted patterns are:

• Bitfield extract on signed/unsigned integers.

(A >> B) & C ==> [u]bit_extract

where

– B and C are compile time constants,

– A is a 8/16/32bit integer type, and

– C is a mask.

• Bitfield insert on signed/unsigned integers

((A & B) << C) | ((D & E) << F ==> ubit_insert

where

– B and E have no conflicting bits (B^E == 0),

– B, C, E, and F are compile-time constants, and 

– B and E are masks.
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– The first bit set in B is greater than the number of bits in E plus the first 
bit set in E, or the first bit set in E is greater than the number of bits in 
B plus the first bit set in B.

– If B, C, E, or F are equivalent to the value 0, this optimization is also 
supported.

2.8 Additional Performance Guidance

This section is a collection of performance tips for GPU compute and AMD-
specific optimizations.

2.8.1 Loop Unroll pragma

The compiler directive #pragma unroll <unroll-factor> can be placed 
immediately prior to a loop as a hint to the compiler to unroll a loop. <unroll-
factor> must be a positive integer, 1 or greater. When <unroll-factor> is 1, 
loop unrolling is disabled. When <unroll-factor> is 2 or greater, the compiler 
uses this as a hint for the number of times the loop is to be unrolled.

Examples for using this loop follow.

No unrolling example:

#pragma unroll 1
for (int i = 0; i < n; i++) {
...
}

Partial unrolling example:

#pragma unroll 4
for (int i = 0; i < 128; i++) {
...
}

Currently, the unroll pragma requires that the loop boundaries can be determined 
at compile time. Both loop bounds must be known at compile time. If n is not 
given, it is equivalent to the number of iterations of the loop when both loop 
bounds are known. If the unroll-factor is not specified, and the compiler can 
determine the loop count, the compiler fully unrolls the loop. If the unroll-factor is 
not specified, and the compiler cannot determine the loop count, the compiler 
does no unrolling. 

2.8.2 Memory Tiling

There are many possible physical memory layouts for images. AMD devices can 
access memory in a tiled or in a linear arrangement.

• Linear – A linear layout format arranges the data linearly in memory such that 
element addresses are sequential. This is the layout that is familiar to CPU 
programmers. This format must be used for OpenCL buffers; it can be used 
for images.
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• Tiled – A tiled layout format has a pre-defined sequence of element blocks 
arranged in sequential memory addresses (see Figure 2.3 for a conceptual 
illustration). A microtile consists of ABIJ; a macrotile consists of the top-left 
16 squares for which the arrows are red. Only images can use this format. 
Translating from user address space to the tiled arrangement is transparent 
to the user. Tiled memory layouts provide an optimized memory access 
pattern to make more efficient use of the RAM attached to the GPU compute 
device. This can contribute to lower latency.

Figure 2.3 One Example of a Tiled Layout Format

Memory Access Pattern – 

Memory access patterns in compute kernels are usually different from those in 
the pixel shaders. Whereas the access pattern for pixel shaders is in a 
hierarchical, space-filling curve pattern and is tuned for tiled memory 
performance (generally for textures), the access pattern for a compute kernel is 
linear across each row before moving to the next row in the global id space. This 
has an effect on performance, since pixel shaders have implicit blocking, and 
compute kernels do not. If accessing a tiled image, best performance is achieved 
if the application tries to use workgroups with 16x16 (or 8x8) work-items.

2.8.3 General Tips

• Using dynamic pointer assignment in kernels that are executed on the GPU 
cause inefficient code generation.

• Many OpenCL specification compiler options that are accepted by the AMD 
OpenCL compiler are not implemented. The implemented options are -D,
-I, w, Werror, -clsingle-precision-constant, -cl-opt-disable, and 
-cl-fp32-correctly-rounded-divide-sqrt.
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• Avoid declaring global arrays on the kernel’s stack frame as these typically 
cannot be allocated in registers and require expensive global memory 
operations.

• Use predication rather than control-flow.  The predication allows the GPU to 
execute both paths of execution in parallel, which can be faster than 
attempting to minimize the work through clever control-flow. The reason for 
this is that if no memory operation exists in a ?: operator (also called a 
ternary operator), this operation is translated into a single cmov_logical 
instruction, which is executed in a single cycle. An example of this is: 

If (A>B) {
 C += D;
} else {
 C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;
C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of 
conditional code, each taking ~8 cycles. If divergent, this code executes in 
~36 clocks; otherwise, in ~28 clocks. A branch not taken costs four cycles 
(one instruction slot); a branch taken adds four slots of latency to fetch 
instructions from the instruction cache, for a total of 16 clocks. Since the 
execution mask is saved, then modified, then restored for the branch, ~12 
clocks are added when divergent, ~8 clocks when not.

In the second block of code, the ?: operator executes in the vector units, so 
no extra CF instructions are generated. Since the instructions are sequentially 
dependent, this block of code executes in 12 cycles, for a 1.3x speed 
improvement. To see this, the first cycle is the (A>B) comparison, the result 
of which is input to the second cycle, which is the cmov_logical factor, bool, 
1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio 
between conditional code and ALU instructions is low, this is a good pattern 
to remove the control flow.

• Loop Unrolling 

– OpenCL kernels typically are high instruction-per-clock applications. 
Thus, the overhead to evaluate control-flow and execute branch 
instructions can consume a significant part of resource that otherwise 
can be used for high-throughput compute operations.

– The AMD OpenCL compiler performs simple loop unrolling optimizations; 
however, for more complex loop unrolling, it may be beneficial to do this 
manually. 

• If possible, create a reduced-size version of your data set for easier 
debugging and faster turn-around on performance experimentation. GPUs do 
not have automatic caching mechanisms and typically scale well as 
resources are added. In many cases, performance optimization for the 
reduced-size data implementation also benefits the full-size algorithm.
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• When tuning an algorithm, it is often beneficial to code a simple but accurate 
algorithm that is retained and used for functional comparison. GPU tuning 
can be an iterative process, so success requires frequent experimentation, 
verification, and performance measurement. 

• The profiling and analysis tools report statistics on a per-kernel granularity. 
To narrow the problem further, it might be useful to remove or comment-out 
sections of code, then re-run the timing and profiling tool.

• Avoid writing code with dynamic pointer assignment on the GPU. For 
example:

kernel void dyn_assign(global int* a, global int* b, global int* c)
{

global int* d;
size_t idx = get_global_id(0);
if (idx & 1) {

d = b;
} else {

d = c;
}
a[idx] = d[idx];

}

This is inefficient because the GPU compiler must know the base pointer that 
every load comes from and in this situation, the compiler cannot determine 
what ‘d’ points to. So, both B and C are assigned to the same GPU resource, 
removing the ability to do certain optimizations. 

• If the algorithm allows changing the work-group size, it is possible to get 
better performance by using larger work-groups (more work-items in each 
work-group) because the workgroup creation overhead is reduced. On the 
other hand, the OpenCL CPU runtime uses a task-stealing algorithm at the 
work-group level, so when the kernel execution time differs because it 
contains conditions and/or loops of varying number of iterations, it might be 
better to increase the number of work-groups. This gives the runtime more 
flexibility in scheduling work-groups to idle CPU cores. Experimentation might 
be needed to reach optimal work-group size.

• Since the AMD OpenCL runtime supports only in-order queuing, using 
clFinish() on a queue and queuing a blocking command gives the same 
result. The latter saves the overhead of another API command.

For example:

clEnqueueWriteBuffer(myCQ, buff, CL_FALSE, 0, buffSize, input, 0, NULL, 
NULL); 

clFinish(myCQ); 

is equivalent, for the AMD OpenCL runtime, to:

 clEnqueueWriteBuffer(myCQ, buff, CL_TRUE, 0, buffSize, input, 0, NULL, 
NULL); 

• GPU ISA: GCN-based GPUs have 32KB of dedicated L1 instruction cache. 
A single instruction cache instance serves up to 4 CUs (depending upon the 
architecture family and device), with each CU holding up to 40 wavefronts. 
As each wavefront includes its own program counter, a single instruction 
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cache unit may serve up to 160 wavefronts with each executing a different 
instruction in the program. 

Note: If the program is larger than 32KB, the L1-L2 cache trashing can inhibit 
performance. The size of the ISA can be determined by using the CodeXL 
analysis mode, under the Statistics tab. For information about how to use 
CodeXL, see Chapter 4.

2.8.4 Guidance for CUDA Programmers Using OpenCL

• Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors 
have documents describing how to do this, including AMD: 

http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

• Some specific performance recommendations which differ from other GPU 
architectures:

– Use a workgroup size that is a multiple of 64. CUDA code can use a 
workgroup size of 32; this uses only half the available compute resources 
on an AMD Radeon HD 7970 GPU.

– AMD GPUs have a very high single-precision flops capability (3.788 
teraflops in a single AMD Radeon HD 7970 GPU). Algorithms that 
benefit from such throughput can deliver excellent performance on AMD 
hardware.

2.8.5 Guidance for CPU Programmers Using OpenCL to Program GPUs

OpenCL is the industry-standard toolchain for programming GPUs and parallel 
devices from many vendors. It is expected that many programmers skilled in 
CPU programming will program GPUs for the first time using OpenCL. This 
section provides some guidance for experienced programmers who are 
programming a GPU for the first time. It specifically highlights the key differences 
in optimization strategy.

• Study the local memory (LDS) optimizations. These greatly affect the GPU 
performance. Note the difference in the organization of local memory on the 
GPU as compared to the CPU cache. Local memory is shared by many 
work-items (64 on Tahiti). This contrasts with a CPU cache that normally is 
dedicated to a single work-item. GPU kernels run well when they 
collaboratively load the shared memory.

• GPUs have a large amount of raw compute horsepower, compared to 
memory bandwidth and to “control flow” bandwidth. This leads to some high-
level differences in GPU programming strategy.

– A CPU-optimized algorithm may test branching conditions to minimize 
the workload. On a GPU, it is frequently faster simply to execute the 
workload.

– A CPU-optimized version can use memory to store and later load pre-
computed values. On a GPU, it frequently is faster to recompute values 
rather than saving them in registers. Per-thread registers are a scarce 
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resource on the CPU; in contrast, GPUs have many available per-thread 
register resources.

• Use float4 and the OpenCL built-ins for vector types (vload, vstore, etc.). 
These enable the AMD OpenCL implementation to generate efficient, packed 
SSE instructions when running on the CPU. Vectorization is an optimization 
that benefits both the AMD CPU and GPU.

2.8.6 Optimizing Kernel Code

2.8.6.1  Using Vector Data Types

The CPU contains a vector unit, which can be efficiently used if the developer is 
writing the code using vector data types. 

For architectures before Bulldozer, the instruction set is called SSE, and the 
vector width is 128 bits. For Bulldozer, there the instruction set is called AVX, for 
which the vector width is increased to 256 bits.

Using four-wide vector types (int4, float4, etc.) is preferred, even with Bulldozer. 

2.8.6.2  Local Memory

The CPU does not benefit much from local memory; sometimes it is detrimental 
to performance. As local memory is emulated on the CPU by using the caches, 
accessing local memory and global memory are the same speed, assuming the 
information from the global memory is in the cache.

2.8.6.3  Using Special CPU Instructions

The Bulldozer family of CPUs supports FMA4 instructions, exchanging 
instructions of the form a*b+c with fma(a,b,c) or mad(a,b,c) allows for the use 
of the special hardware instructions for multiplying and adding.

There also is hardware support for OpenCL functions that give the new hardware 
implementation of rotating.

For example:

sum.x += tempA0.x * tempB0.x + tempA0.y * tempB1.x + tempA0.z * tempB2.x + 
tempA0.w * tempB3.x;

can be written as a composition of mad instructions which use fused multiple add 
(FMA): 

sum.x += mad(tempA0.x, tempB0.x, mad(tempA0.y, tempB1.x, mad(tempA0.z, 
tempB2.x, tempA0.w*tempB3.x)));

2.8.6.4  Avoid Barriers When Possible

Using barriers in a kernel on the CPU causes a significant performance penalty 
compared to the same kernel without barriers. Use a barrier only if the kernel 
requires it for correctness, and consider changing the algorithm to reduce 
barriers usage.
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2.8.7 Optimizing Kernels for Southern Island GPUs

2.8.7.1  Remove Conditional Assignments

A conditional of the form “if-then-else” generates branching. Use the select() 
function to replace these structures with conditional assignments that do not 
cause branching. For example:

if(x==1) r=0.5;
if(x==2) r=1.0;

becomes

r = select(r, 0.5, x==1);
r = select(r, 1.0, x==2);

Note that if the body of the if statement contains an I/O, the if statement cannot 
be eliminated.

2.8.7.2  Bypass Short-Circuiting

A conditional expression with many terms can compile into nested conditional 
code due to the C-language requirement that expressions must short circuit. To 
prevent this, move the expression out of the control flow statement. For example:

if(a&&b&&c&&d){…}

becomes

bool cond = a&&b&&c&&d;
if(cond){…}

The same applies to conditional expressions used in loop constructs (do, while, 
for).

2.8.7.3  Unroll Small Loops

If the loop bounds are known, and the loop is small (less than 16 or 32 
instructions), unrolling the loop usually increases performance.

2.8.7.4  Avoid Nested ifs

Because the GPU is a Vector ALU architecture, there is a cost to executing an 
if-then-else block because both sides of the branch are evaluated, then one 
result is retained while the other is discarded. When if blocks are nested, the 
results are twice as bad; in general, if blocks are nested k levels deep, 2^k 
nested conditional structures are generated. In this situation, restructure the code 
to eliminate nesting.

2.8.7.5  Experiment With do/while/for Loops

for loops can generate more conditional code than equivalent do or while loops. 
Experiment with these different loop types to find the one with best performance.
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2.9 Specific Guidelines for GCN family GPUs

The AMD Southern Islands (SI), Sea Islands (CI), and Volcanic Islands (VI) 
families of products are quite different from previous generations. These families 
are based on what is publicly called Graphics Core Next (GCN) and are 
collectively referred to as GCN chips.

The compute units in GCN devices are much different from those of previous 
chips. With previous generations, a compute unit (Vector ALU) was VLIW in 
nature, so four (Cayman GPUs) or five (all other Evergreen/Northern Islands 
GPUs) instructions could be packed into a single ALU instruction slot (called a 
bundle). It was not always easy to schedule instructions to fill all of these slots, 
so achieving peak ALU utilization was a challenge.

With GCN GPUs, the compute units are now scalar; however, there now are four 
Vector ALUs per compute unit. Each Vector ALU requires at least one wavefront 
scheduled to it to achieve peak ALU utilization.

Along with the four Vector ALUs within a compute unit, there is also a scalar unit. 
The scalar unit is used to handle branching instructions, constant cache 
accesses, and other operations that occur per wavefront. The advantage to 
having a scalar unit for each compute unit is that there are no longer large 
penalties for branching, aside from thread divergence.

The instruction set for SI is scalar, as are GPRs. Also, the instruction set is no 
longer clause-based. There are two types of GPRs: scalar GPRs (SGPRs) and 
vector GPRs (VGPRs). Each Vector ALU has its own SGPR and VGPR pool. 
There are 512 SGPRs and 256 VGPRs per Vector ALU. VGPRs handle all vector 
instructions (any instruction that is handled per thread, such as v_add_f32, a 
floating point add). SGPRs are used for scalar instructions: any instruction that 
is executed once per wavefront, such as a branch, a scalar ALU instruction, and 
constant cache fetches. (SGPRs are also used for constants, all buffer/texture 
definitions, and sampler definitions; some kernel arguments are stored, at least 
temporarily, in SGPRs.) SGPR allocation is in increments of eight, and VGPR 
allocation is in increments of four. These increments also represent the minimum 
allocation size of these resources.

Typical scalar instructions execute in four cycles. The scalar engine can accept 
one instruction per SIMD every four cycles. The latency of a scalar instruction is 
typically four clocks.

Typical vector instructions execute in four cycles.  SIMDs within a compute unit 
can overlap vector instruction execution; each SIMD unit is offset by one cycle 
from the previous one. This allows each SIMD unit to execute one Vector ALU 
instruction and one scalar ALU instruction every four clocks.

All GCN GPUs have double-precision support. For Tahiti (AMD Radeon HD 
79XX series), double precision adds run at one-half the single precision add rate. 
Double-precision multiplies and MAD instructions run at one-quarter the floating-
point rate.
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The double-precision rate of Pitcairn (AMD Radeon HD 78XX series) and Cape 
Verde (AMD Radeon HD 77XX series) is one quarter that of Tahiti. This also 
affects the performance of single-precision fused multiple add (FMA).

Similar to previous generations local data share (LDS) is a shared resource 
within a compute unit. The maximum LDS allocation size for a work-group is still 
32 kB, however each compute unit has a total of 64 kB of LDS. On SI GPUs, 
LDS memory has 32 banks; thus, it is important to be aware of LDS bank 
conflicts on half-wavefront boundaries. The allocation granularity for LDS is 256 
bytes; the minimum size is 0 bytes. It is much easier to achieve high LDS 
bandwidth use on SI hardware.

L1 cache is still shared within a compute unit. The size has now increased to 
16 kB per compute unit for all SI GPUs. The caches now are read/write, so 
sharing data between work-items in a work-group (for example, when LDS does 
not suffice) is much faster.

It is possible to schedule a maximum of 10 wavefronts per vector unit, assuming 
there are no limitations by other resources, such as registers or local memory; 
but there is a limit of 16 work-groups per compute unit if the work-groups are 
larger than a single wavefront. If the dispatch is larger than what can fit at once 
on the GPU, the GPU schedules new work-groups as others finish.

Since there are no more clauses in the instruction set architecture (ISA) for GCN 
devices, the compiler inserts “wait” commands to indicate that the compute unit 
needs the results of a memory operation before proceeding. If the scalar unit 
determines that a wait is required (the data is not yet ready), the Vector ALU can 
switch to another wavefront. There are different types of wait commands, 
depending on the memory access.

Notes – 

• Vectorization is no longer needed, nor desirable; in fact, it can affect 
performance because it requires a greater number of VGPRs for storage. I 
is recommended not to combine work-items.

• Register spilling is no greater a problem with four wavefronts per work-group 
than it is with one wavefront per work-group. This is because each wavefront 
has the same number of SGPRs and VGPRs available in either case.

• Read coalescing does not work for 64-bit data sizes. This means reads for 
float2, int2, and double might be slower than expected.

• Work-groups with 256 work-items can be used to ensure that each compute 
unit is being used. Barriers now are much faster.

• The engine is wider than previous generations; this means larger dispatches 
are required to keep the all the compute units busy.

• A single wavefront can take twice as long to execute compared to previous 
generations (assuming ALU bound). This is because GPUs with VLIW-4 
could execute the four instructions in a VLIW bundle in eight clocks (typical), 
and SI GPUs can execute one vector instruction in four clocks (typical).
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• Execution of kernel dispatches can overlap if there are no dependencies 
between them and if there are resources available in the GPU. This is critical 
when writing benchmarks it is important that the measurements are accurate 
and that “false dependencies” do not cause unnecessary slowdowns.

An example of false dependency is:

a. Application creates a kernel “foo”.

b. Application creates input and output buffers.

c. Application binds input and output buffers to kernel “foo”.

d. Application repeatedly dispatches “foo” with the same parameters.

If the output data is the same each time, then this is a false dependency because 
there is no reason to stall concurrent execution of dispatches. To avoid stalls, use 
multiple output buffers. The number of buffers required to get peak performance 
depends on the kernel.

Table 2.4 compares the resource limits for Northern Islands and Southern Islands 
GPUs.

Table 2.4 Resource Limits for Northern Islands and Southern Islands

Table 2.4 provides a simplified picture showing the Northern Island compute unit 
arrangement.

Figure 2.4 Northern Islands Compute Unit Arrangement

Table 2.5 provides a simplified picture showing the Southern Island compute unit 
arrangement.

VLIW 
Width VGPRs SGPRs LDS Size

LDS Max 
Alloc L1$/CU L2$/Channel

Northern 
Islands

4 256 (128-
bit)

- 32 kB 32 kB 8 kB 64 kB

Southern 
Islands

1 256 
(32-bit)

512 64 kB 32 kB 16 kB 64 kB

X Y Z W
TEXTURE

UNIT
LDS
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Figure 2.5 Southern Island Compute Unit Arrangement

2.10 Device Parameters for Southern Islands Devices

The following table provides device-specific information for some AMD Southern 
Islands GPUs.

Table 2.5 Parameters for AMD 7xxx Devices

VECTOR

ALU

VECTOR

ALU

VECTOR

ALU

VECTOR

ALU

SCALAR

UNIT

TEXTURE

UNIT
LDS

Verde
PRO

Verde
XT

Pitcairn
PRO

Pitcairn
XT

Tahiti
PRO

Tahiti
XT

Product Name
(AMD Radeon HD)

7750 7770 7850 7870 7950 7970

Engine Speed (MHz) 800 1000 860 1000 800 925

Compute Resources

Compute Units 8 10 16 20 28 32

Processing Elements 512 640 1024 1280 1792 2048

Peak Gflops 819 1280 1761 2560 2867 3789

Cache and Register Sizes

# of 32b Vector Registers/CU 65536 65536 65536 65536 65536 65536

Size of Vector Registers/CU 256 kB 256 kB 256 kB 256 kB 256 kB 256 kB

LDS Size/ CU 64 kB 64 kB 64 kB 64 kB 64 kB 64 kB

LDS Banks / CU 32 32 32 32 32 32

Constant Cache / GPU 64 kB 64 kB 128 kB 128 kB 128 kB 128 kB

Max Constants / 4 CUs 16 kB 16 kB 16 kB 16 kB 16 kB 16 kB

L1 Cache Size / CU 16 kB 16 kB 16 kB 16 kB 16 kB 16 kB

L2 Cache Size / GPU 512 kB 512 kB 512 kB 512 kB 768 kB 768 kB

Peak GPU Bandwidths

Register Read (GB/s) 4915 7680 10568 15360 17203 22733

LDS Read (GB/s) 819 1280 1761 2560 2867 3789

Constant Cache Read (GB/s) 102 160 220 320 358 474

L1 Read (GB/s) 410 640 881 1280 1434 1894

L2 Read (GB/s) 205 256 440 512 614 710

Global Memory (GB/s) 72 72 154 154 240 264

Global Limits

Max Wavefronts / GPU 320 400 640 800 1120 1280

Max Wavefronts / CU (avg) 40 40 40 40 40 40

Max Work-Items / GPU 20480 25600 40960 51200 71680 81920
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Memory

Memory Channels 4 4 8 8 12 12

Memory Bus Width (bits) 128 128 256 256 384 384

Memory Type and
Speed (MHz)

GDDR5
1125

GDDR5
1125

GDDR5
1200

GDDR5
1200

GDDR5
1250

GDDR5
1375

Frame Buffer 1 GB 1 GB 2 GB 1 GB or
2 GB

3 GB 3 GB
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Chapter 3
OpenCL Performance and 
Optimization for Evergreen and 
Northern Islands Devices

This chapter discusses performance and optimization when programming for 
AMD GPU compute devices that are part of the Southern Islands family, as well 
as CPUs and multiple devices. Details specific to the Evergreen and Northern 
Islands families of GPUs are provided in Chapter 2, “OpenCL Performance and 
Optimization for GCN Devices.”

3.1 Global Memory Optimization

Figure 3.1 is a block diagram of the GPU memory system. The up arrows are 
read paths, the down arrows are write paths. WC is the write combine cache.

The GPU consists of multiple compute units. Each compute unit contains 32 kB 
local (on-chip) memory, L1 cache, registers, and 16 processing element (PE). 
Each processing element contains a five-way (or four-way, depending on the 
GPU type) VLIW processor. Individual work-items execute on a single processing 
element; one or more work-groups execute on a single compute unit. On a GPU, 
hardware schedules the work-items. On the ATI Radeon™ HD 5000 series of 
GPUs, hardware schedules groups of work-items, called wavefronts, onto stream 
cores; thus, work-items within a wavefront execute in lock-step; the same 
instruction is executed on different data.

The L1 cache is 8 kB per compute unit. (For the ATI Radeon™ HD 5870 GPU, 
this means 160 kB for the 20 compute units.) The L1 cache bandwidth on the 
ATI Radeon™ HD 5870 GPU is one terabyte per second:

L1 Bandwidth = Compute Units * Wavefront Size/Compute Unit * 
EngineClock 

Multiple compute units share L2 caches. The L2 cache size on the ATI Radeon™ 

HD 5870 GPUs is 512 kB:

L2 Cache Size = Number or channels * L2 per Channel

The bandwidth between L1 caches and the shared L2 cache is 435 GB/s:

L2 Bandwidth = Number of channels * Wavefront Size * Engine Clock
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Figure 3.1 Memory System

The ATI Radeon™ HD 5870 GPU has eight memory controllers (“Memory 
Channel” in Figure 3.1). The memory controllers are connected to multiple banks 
of memory. The memory is GDDR5, with a clock speed of 1200 MHz and a data 
rate of 4800 Mb/pin. Each channel is 32-bits wide, so the peak bandwidth for the 
ATI Radeon™ HD 5870 GPU is:

(8 memory controllers) * (4800 Mb/pin) * (32 bits) * (1 B/8b) = 154 GB/s

If two memory access requests are directed to the same controller, the hardware 
serializes the access. This is called a channel conflict. Similarly, if two memory 
access requests go to the same memory bank, hardware serializes the access. 
This is called a bank conflict. From a developer’s point of view, there is not much 
difference between channel and bank conflicts. A large power of two stride 
results in a channel conflict; a larger power of two stride results in a bank conflict. 
The size of the power of two stride that causes a specific type of conflict depends 
on the chip. A stride that results in a channel conflict on a machine with eight 
channels might result in a bank conflict on a machine with four.
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In this document, the term bank conflict is used to refer to either kind of conflict.

3.1.1 Two Memory Paths

ATI Radeon HD 5000 series graphics processors have two, independent 
memory paths between the compute units and the memory:

• FastPath performs only basic operations, such as loads and stores (data 
sizes must be a multiple of 32 bits). This often is faster and preferred when 
there are no advanced operations.

• CompletePath, supports additional advanced operations, including atomics 
and sub-32-bit (byte/short) data transfers. 

3.1.1.1  Performance Impact of FastPath and CompletePath

There is a large difference in performance on ATI Radeon HD 5000 series 
hardware between FastPath and CompletePath. Figure 3.2 shows two kernels 
(one FastPath, the other CompletePath) and the delivered DRAM bandwidth for 
each kernel on the ATI Radeon™ HD 5870 GPU. Note that an atomic add forces 
CompletePath.

Figure 3.2 FastPath (blue) vs CompletePath (red) Using float1

The kernel code follows. Note that the atomic extension must be enabled under 
OpenCL 1.0. 
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__global float * output)
{

int gid = get_global_id(0); 
output[gid] = input[gid];
return ;

}
__kernel void
CopyComplete(__global const float * input, __global float* output)

{
int gid = get_global_id(0);
if (gid <0){
atom_add((__global int *) output,1);
}

output[gid] = input[gid];
return ;

}

Table 3.1 lists the effective bandwidth and ratio to maximum bandwidth. 

Table 3.1 Bandwidths for 1D Copies

The difference in performance between FastPath and CompletePath is 
significant. If your kernel uses CompletePath, consider if there is another way to 
approach the problem that uses FastPath. OpenCL read-only images always use 
FastPath. 

3.1.1.2  Determining The Used Path

Since the path selection is done automatically by the OpenCL compiler, your 
kernel may be assigned to CompletePath. This section explains the strategy the 
compiler uses, and how to find out what path was used.

The compiler is conservative when it selects memory paths. The compiler often 
maps all user data into a single unordered access view (UAV),1 so a single 
atomic operation (even one that is not executed) may force all loads and stores 
to use CompletePath.

The effective bandwidth listing above shows two OpenCL kernels and the 
associated performance. The first kernel uses the FastPath while the second 
uses the CompletePath. The second kernel is forced to CompletePath because 
in CopyComplete, the compiler noticed the use of an atomic.

There are two ways to find out which path is used. The first method uses the 
CodeXL GPU Profiler, which provides the following three performance counters 
for this purpose:

1. FastPath counter: The total bytes written through the FastPath (no atomics, 
32-bit types only).

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth

copy 32-bit 1D FP 96 GB/s 63%

copy 32-bit 1D CP 18 GB/s 12%

1. UAVs allow compute shaders to store results in (or write results to) a buffer at any arbitrary location. 
On DX11 hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs can-
not be created from typed resources (textures). This is the same as a random access target (RAT).
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2. CompletePath counter: The total bytes read and written through the 
CompletePath (supports atomics and  non-32-bit types).

3. PathUtilization counter: The percentage of bytes read and written through the 
FastPath or CompletePath compared to the total number of bytes transferred 
over the bus.

The second method is static and lets you determine the path by looking at a 
machine-level ISA listing (using the AMD CodeXL Static Kernel Analyzer in 
OpenCL). 

MEM_RAT_CACHELESS -> FastPath
MEM_RAT -> CompPath
MEM_RAT_NOP_RTN -> Comp_load

FastPath operations appear in the listing as: 

...
TEX: ...
... VFETCH ...
... MEM_RAT_CACHELESS_STORE_RAW: ...
...

The vfetch Instruction is a load type that in graphics terms is called a vertex 
fetch (the group control TEX indicates that the load uses the L1 cache.) 

The instruction MEM_RAT_CACHELESS indicates that FastPath operations are used.

Loads in CompletePath are a split-phase operation. In the first phase, hardware 
copies the old value of a memory location into a special buffer. This is done by 
performing atomic operations on the memory location. After the value has 
reached the buffer, a normal load is used to read the value. Note that RAT stands 
for random access target, which is the same as an unordered access view (UAV); 
it allows, on DX11 hardware, writes to, and reads from, any arbitrary location in 
a buffer. 

The listing shows:

.. MEM_RAT_NOP_RTN_ACK: RAT(1)

.. WAIT_ACK: Outstanding_acks <= 0

.. TEX: ADDR(64) CNT(1)

.. VFETCH ...

The instruction sequence means the following:

MEM_RAT Read into a buffer using CompletePath, do no operation on the 
memory location, and send an ACK when done.

WAIT_ACK Suspend execution of the wavefront until the ACK is received. If 
there is other work pending this might be free, but if there is no other 
work to be done this could take 100’s of cycles.

TEX Use the L1 cache for the next instruction.

VFETCH Do a load instruction to (finally) get the value.
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Stores appear as:

.. MEM_RAT_STORE_RAW: RAT(1)

The instruction MEM_RAT_STORE is the store along the CompletePath.

MEM_RAT means CompletePath; MEM_RAT_CACHELESS means FastPath.

3.1.2 Channel Conflicts

The important concept is memory stride: the increment in memory address, 
measured in elements, between successive elements fetched or stored by 
consecutive work-items in a kernel. Many important kernels do not exclusively 
use simple stride one accessing patterns; instead, they feature large non-unit 
strides. For instance, many codes perform similar operations on each dimension 
of a two- or three-dimensional array. Performing computations on the low 
dimension can often be done with unit stride, but the strides of the computations 
in the other dimensions are typically large values. This can result in significantly 
degraded performance when the codes are ported unchanged to GPU systems. 
A CPU with caches presents the same problem, large power-of-two strides force 
data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the 
kernels. This allows all computations to be done at unit stride. Ensure that the 
time required for the transposition is relatively small compared to the time to 
perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is 
worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write 
adjacent memory addresses. This is one way to avoid channel conflicts. 

When the application has complete control of the access pattern and address 
generation, the developer must arrange the data structures to minimize bank 
conflicts. Accesses that differ in the lower bits can run in parallel; those that differ 
only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
R0 = *ptr ;

where the lower bits are all the same, the memory requests all access the same 
bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of 
2 (and larger than the channel interleave), the loop above only accesses one 
channel of memory.
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The hardware byte address bits are: 

• On all ATI Radeon HD 5000-series GPUs, the lower eight bits select an 
element within a channel.

• The next set of bits select the channel. The number of channel bits varies, 
since the number of channels is not the same on all parts. With eight 
channels, three bits are used to select the channel; with two channels, a 
single bit is used.

• The next set of bits selects the memory bank. The number of bits used 
depends on the number of memory banks.

• The remaining bits are the rest of the address.

On the ATI Radeon HD 5870 GPU, the channel selection are bits 10:8 of the 
byte address. This means a linear burst switches channels every 256 bytes. 
Since the wavefront size is 64, channel conflicts are avoided if each work-item 
in a wave reads a different address from a 64-word region. All ATI Radeon HD 
5000 series GPUs have the same layout: channel ends at bit 8, and the memory 
bank is to the left of the channel.

A burst of 2 kB (8 * 256 bytes) cycles through all the channels. 

When calculating an address as y*width+x, but reading a burst on a column 
(incrementing y), only one memory channel of the system is used, since the width 
is likely a multiple of 256 words = 2048 bytes. If the width is an odd multiple of 
256B, then it cycles through all channels.

Similarly, the bank selection bits on the ATI Radeon HD 5870 GPU are bits 
14:11, so the bank switches every 2 kB. A linear burst of 32 kB cycles through 
all banks and channels of the system. If accessing a 2D surface along a column, 
with a y*width+x calculation, and the width is some multiple of 2 kB dwords (32 
kB), then only 1 bank and 1 channel are accessed of the 16 banks and 8 
channels available on this GPU.

All ATI Radeon HD 5000-series GPUs have an interleave of 256 bytes (64 
dwords).

If every work-item in a work-group references consecutive memory addresses 
and the address of work-item 0 is aligned to 256 bytes and each work-item 
fetches 32 bits, the entire wavefront accesses one channel. Although this seems 
slow, it actually is a fast pattern because it is necessary to consider the memory 
access over the entire device, not just a single wavefront. 

One or more work-groups execute on each compute unit. On the ATI Radeon 
HD 5000-series GPUs, work-groups are dispatched in a linear order, with x 
changing most rapidly. For a single dimension, this is:

DispatchOrder = get_group_id(0)

31:x bank channel 7:0 address
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For two dimensions, this is:

DispatchOrder = get_group_id(0) + get_group_id(1) * get_num_groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute 
units are in use, additional work-groups are assigned to compute units as 
needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single 
wavefront. In memory intensive kernels, it is likely that the instruction is a 
memory access. Since there are eight channels on the ATI Radeon HD 5870 
GPU, at most eight of the compute units can issue a memory access operation 
in one cycle. It is most efficient if the accesses from eight wavefronts go to 
different channels. One way to achieve this is for each wavefront to access 
consecutive groups of 256 = 64 * 4 bytes.

An inefficient access pattern is if each wavefront accesses all the channels. This 
is likely to happen if consecutive work-items access data that has a large power 
of two strides.

In the next example of a kernel for copying, the input and output buffers are 
interpreted as though they were 2D, and the work-group size is organized as 2D.

The kernel code is:

#define WIDTH 1024
#define DATA_TYPE float
#define A(y , x ) A[ (y) * WIDTH + (x ) ] 
#define C(y , x ) C[ (y) * WIDTH+(x ) ]
kernel void copy_float (__global const

DATA_TYPE * A,
__global DATA_TYPE* C)

{
int idx = get_global_id(0);
int idy = get_global_id(1);
C(idy, idx) = A( idy, idx);

}

By changing the width, the data type and the work-group dimensions, we get a 
set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit 
address. Given a 1x64 work-group size, each work-item reads a value separated 
by the width in a power of two bytes.

Table 3.2 shows how much the launch dimension can affect performance. It lists 
each kernel’s effective bandwidth and ratio to maximum bandwidth.

Table 3.2 Bandwidths for Different Launch Dimensions

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth

copy 32-bit 1D FP 96 GB/s 63%
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To avoid power of two strides:

• Add an extra column to the data matrix.

• Change the work-group size so that it is not a power of 21.

• It is best to use a width that causes a rotation through all of the memory 
channels, instead of using the same one repeatedly.

• Change the kernel to access the matrix with a staggered offset.

3.1.2.1  Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data 
is processed in a different order. Unlike adding a column, this technique does not 
use extra space. It is also relatively simple to add to existing code.

Figure 3.3 illustrates the transformation to staggered offsets.

Figure 3.3 Transformation to Staggered Offsets

copy 32-bit 1D CP 18 GB/s 12%

copy 32-bit 2D .3 - 93 GB/s 0 - 60%

copy 128-bit 2D 7 - 122 GB/s 5 - 80%

1. Generally, it is not a good idea to make the work-group size something other than an integer multiple 
of the wavefront size, but that usually is less important than avoiding channel conflicts.
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The global ID values reflect the order that the hardware initiates work-groups. 
The values of get group ID are in ascending launch order.

global_id(0) = get_group_id(0) * get_local_size(0) + get_local_id(0)
global_id(1) = get_group_id(1) * get_local_size(1) + get_local_id(1)

The hardware launch order is fixed, but it is possible to change the launch order, 
as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D 
matrix of size 2n x 2m in row-major order. If each work-group must process a 
block in column-order, the launch order does not work out correctly: consecutive 
work-groups execute down the columns, and the columns are a large power-of-
two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid 
channel conflicts. Since we are executing 2D work-groups, each work group is 
identified by four numbers.

1. get_group_id(0) - the x coordinate or the block within the column of the 
matrix.

2. get_group_id(1) - the y coordinate or the block within the row of the matrix.

3. get_global_id(0) - the x coordinate or the column of the matrix.

4. get_global_id(1) - the y coordinate or the row of the matrix.

To transform the code, add the following four lines to the top of the kernel.

get_group_id_0 = get_group_id(0);
get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void 
copy_float (
__global const DATA_TYPE * A,
__global DATA_TYPE * C)

{
size_t get_group_id_0 = get_group_id(0);
size_t get_group_id_1 = (get_group_id(0) + get_group_id(1)) %

get_local_size(0);
      
size_t get_global_id_0 = get_group_id_0 * get_local_size(0) +

get_local_id(0);
size_t get_global_id_1 = get_group_id_1 * get_local_size(1) +

get_local_id(1);
      
int idx = get_global_id_0; //changed to staggered form
int idy = get_global_id_1; //changed to staggered form

C(idy , idx) = A( idy , idx);
}

3.1.2.2  Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that 
reading from the same address is a conflict, even on the FastPath.



A M D  A P P  S D K

3.1 Global Memory Optimization 3-11
Copyright © 2015 Advanced Micro Devices, Inc. All rights reserved.  

This does not happen on the read-only memories, such as constant buffers, 
textures, or shader resource view (SRV); but it is possible on the read/write UAV 
memory or OpenCL global memory. 

From a hardware standpoint, reads from a fixed address have the same upper 
bits, so they collide and are serialized. To read in a single value, read the value 
in a single work-item, place it in local memory, and then use that location:

Avoid:
temp = input[3] // if input is from global space

Use:
if (get_local_id(0) == 0) {
local = input[3]

}
barrier(CLK_LOCAL_MEM_FENCE);

temp = local

3.1.3 Float4 Or Float1

The internal memory paths on ATI Radeon HD 5000-series devices support 
128-bit transfers. This allows for greater bandwidth when transferring data in 
float4 format. In certain cases (when the data size is a multiple of four), float4 
operations are faster. 

The performance of these kernels can be seen in Figure 3.4. Change to float4 
after eliminating the conflicts.

Figure 3.4 Two Kernels: One Using float4 (blue), the Other float1 (red)
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The following code example has two kernels, both of which can do a simple copy, 
but Copy4 uses float4 data types.

__kernel void
Copy4(__global const float4 * input,

__global float4 * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;

}
__kernel void
Copy1(__global const float * input,

__global float * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;

}

Copying data as float4 gives the best result: 84% of absolute peak. It also speeds 
up the 2D versions of the copy (see  Table 3.3).

Table 3.3 Bandwidths Including float1 and float4

3.1.4 Coalesced Writes

On some other vendor devices, it is important to reorder your data to use 
coalesced writes. The ATI Radeon HD 5000-series devices also support 
coalesced writes, but this optimization is less important than other 
considerations, such as avoiding bank conflicts.

In non-coalesced writes, each compute unit accesses the memory system in 
quarter-wavefront units. The compute unit transfers a 32-bit address and one 
element-sized piece of data for each work-item. This results in a total of 16 
elements + 16 addresses per quarter-wavefront. On ATI Radeon HD 5000-
series devices, processing quarter-wavefront requires two cycles before the data 
is transferred to the memory controller.

In coalesced writes, the compute unit transfers one 32-bit address and 16 
element-sized pieces of data for each quarter-wavefront, for a total of 16 
elements +1 address per quarter-wavefront. For coalesced writes, processing 
quarter-wavefront takes one cycle instead of two. While this is twice as fast, the 
times are small compared to the rate the memory controller can handle the data. 
See Figure 3.5.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth

copy 32-bit 1D FP 96 GB/s 63%

copy 32-bit 1D CP 18 GB/s 12%

copy 32-bit 2D .3 - 93 GB/s 0 - 61%

copy 128-bit 2D 7 - 122 GB/s 5 - 80%

copy4 float4 1D FP 127 GB/s 83%
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On ATI Radeon HD 5000-series devices, the coalescing is only done on the 
FastPath because it supports only 32-bit access.

If a work-item does not write, coalesce detection ignores it.

The first kernel Copy1 maximizes coalesced writes: work-item k writes to address 
k. The second kernel writes a shifted pattern: In each quarter-wavefront of 16 
work-items, work-item k writes to address k-1, except the first work-item in each 
quarter-wavefront writes to address k+16. There is not enough order here to 
coalesce on some other vendor machines. Finally, the third kernel has work-item 
k write to address k when k is even, and write address 63-k when k is odd. This 
pattern never coalesces.

Figure 3.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal 
(red), Split (green) 
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__kernel void NoCoal (__global const float * input,
__global float * output)
// (shift by 16)
{
int gid = get_global_id(0)-1;
if((get_local_id(0) & 0xf) == 0)
 {
 gid = gid +16;
}
output[gid] = input[gid];
return;

}
__kernel void
// inefficient pattern
Split (__global const float * input, __global float * output)
{
int gid = get_global_id(0);
if((gid & 0x1) == 0) {
gid = (gid & (˜63)) +62 - get_local_id(0);

}
output[gid] = input[gid];
return;
}

Table 3.4 lists the effective bandwidth and ratio to maximum bandwidth for each 
kernel type.

Table 3.4 Bandwidths Including Coalesced Writes

There is not much performance difference, although the coalesced version is 
slightly faster.

3.1.5 Alignment

The program in Figure 3.6 shows how the performance of a simple, unaligned 
access (float1) of this kernel varies as the size of offset varies. Each transfer was 
large (16 MB). The performance gain by adjusting alignment is small, so 
generally this is not an important consideration on AMD GPUs.

Kernel
Effective

Bandwidth
Ratio to Peak

Bandwidth

copy 32-bit 1D FP 96 GB/s 63%

copy 32-bit 1D CP 18 GB/s 12%

copy 32-bit 2D .3 - 93 GB/s 0 - 61%

copy 128-bit 2D 7 - 122 GB/s 5 - 80%

copy4 float4 1D FP 127 GB/s 83%

Coal 32-bit 97 63%

NoCoal 32-bit 93 GB/s 61%

Split 32-bit 90 GB/s 59%
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Figure 3.6 Unaligned Access Using float1

__kernel void
CopyAdd(global const float * input,
__global float * output,
const int offset)
{
int gid = get_global_id(0)+ offset;
output[gid] = input[gid];
return;
}

Table 3.5 lists the effective bandwidth and ratio to maximum bandwidth for each 
kernel type.

Table 3.5 Bandwidths Including Unaligned Access

Kernel Effective Bandwidth Ratio to Peak Bandwidth

copy 32-bit 1D FP 96 GB/s 63%

copy 32-bit 1D CP 18 GB/s 12%

copy 32-bit 2D .3 - 93 GB/s 0 - 61%

copy 128-bit 2D 7 - 122 GB/s 5 - 80%

copy4 float4 1D FP 127 GB/s 83%

Coal 97 63%

NoCoal 32-bit 90 GB/s 59%

Split 32-bit 90 GB/s 59%

CopyAdd 32-bit 92 GB/s 60%
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3.1.6 Summary of Copy Performance

The performance of a copy can vary greatly, depending on how the code is 
written. The measured bandwidth for these copies varies from a low of 0.3 GB/s, 
to a high of 127 GB/s.

The recommended order of steps to improve performance is:

1. Examine the code to ensure you are using FastPath, not CompletePath, 
everywhere possible. Check carefully to see if you are minimizing the 
number of kernels that use CompletePath operations. You might be able to 
use textures, image-objects, or constant buffers to help.

2. Examine the data-set sizes and launch dimensions to see if you can 
eliminate bank conflicts.

3. Try to use float4 instead of float1.

4. Try to change the access pattern to allow write coalescing. This is important 
on some hardware platforms, but only of limited importance for AMD GPU 
devices.

5. Finally, look at changing the access pattern to allow data alignment.

3.2 Local Memory (LDS) Optimization

AMD Evergreen GPUs include a Local Data Store (LDS) cache, which 
accelerates local memory accesses. LDS is not supported in OpenCL on AMD 
R700-family GPUs. LDS provides high-bandwidth access (more than 10X higher 
than global memory), efficient data transfers between work-items in a work-
group, and high-performance atomic support. Local memory offers significant 
advantages when the data is re-used; for example, subsequent accesses can 
read from local memory, thus reducing global memory bandwidth. Another 
advantage is that local memory does not require coalescing.

To determine local memory size:

clGetDeviceInfo( …, CL_DEVICE_LOCAL_MEM_SIZE, … );

All AMD Evergreen GPUs contain a 32K LDS for each compute unit. On high-
end GPUs, the LDS contains 32-banks, each bank is four bytes wide and 256 
bytes deep; the bank address is determined by bits 6:2 in the address. On lower-
end GPUs, the LDS contains 16 banks, each bank is still 4 bytes in size, and the 
bank used is determined by bits 5:2 in the address. As shown below, 
programmers should carefully control the bank bits to avoid bank conflicts as 
much as possible.

In a single cycle, local memory can service a request for each bank (up to 32 
accesses each cycle on the ATI Radeon HD 5870 GPU). For an ATI Radeon 
HD 5870 GPU, this delivers a memory bandwidth of over 100 GB/s for each 
compute unit, and more than 2 TB/s for the whole chip. This is more than 14X 
the global memory bandwidth. However, accesses that map to the same bank 
are serialized and serviced on consecutive cycles. A wavefront that generates 
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bank conflicts stalls on the compute unit until all LDS accesses have completed. 
The GPU reprocesses the wavefront on subsequent cycles, enabling only the 
lanes receiving data, until all the conflicting accesses complete. The bank with 
the most conflicting accesses determines the latency for the wavefront to 
complete the local memory operation. The worst case occurs when all 64 work-
items map to the same bank, since each access then is serviced at a rate of one 
per clock cycle; this case takes 64 cycles to complete the local memory access 
for the wavefront. A program with a large number of bank conflicts (as measured 
by the LDSBankConflict performance counter) might benefit from using the 
constant or image memory rather than LDS. 

Thus, the key to effectively using the local cache memory is to control the access 
pattern so that accesses generated on the same cycle map to different banks in 
the local memory. One notable exception is that accesses to the same address 
(even though they have the same bits 6:2) can be broadcast to all requestors 
and do not generate a bank conflict. The LDS hardware examines the requests 
generated over two cycles (32 work-items of execution) for bank conflicts. 
Ensure, as much as possible, that the memory requests generated from a 
quarter-wavefront avoid bank conflicts by using unique address bits 6:2. A simple 
sequential address pattern, where each work-item reads a float2 value from LDS, 
generates a conflict-free access pattern on the ATI Radeon HD 5870 GPU. 
Note that a sequential access pattern, where each work-item reads a float4 value 
from LDS, uses only half the banks on each cycle on the ATI Radeon HD 5870 
GPU and delivers half the performance of the float access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle. 
Byte and short reads consume four bytes of LDS bandwidth. Since each stream 
processor can execute five operations (or four, depending on the GPU type) in 
the VLIW each cycle (typically requiring 10-15 input operands), two local memory 
requests might not provide enough bandwidth to service the entire instruction. 
Developers can use the large register file: each compute unit has 256 kB of 
register space available (8X the LDS size) and can provide up to twelve 4-byte 
values/cycle (6X the LDS bandwidth). Registers do not offer the same indexing 
flexibility as does the LDS, but for some algorithms this can be overcome with 
loop unrolling and explicit addressing. 

LDS reads require one ALU operation to initiate them. Each operation can initiate 
two loads of up to four bytes each. 

The CodeXL GPU Profiler provides the following performance counter to help 
optimize local memory usage:

LDSBankConflict: The percentage of time accesses to the LDS are stalled 
due to bank conflicts relative to GPU Time. In the ideal case, there are no 
bank conflicts in the local memory access, and this number is zero. 

Local memory is software-controlled “scratchpad” memory. In contrast, caches 

typically used on CPUs monitor the access stream and automatically capture 

recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly 

load items into the memory; they exist in local memory until the kernel replaces 
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them, or until the work-group ends. To declare a block of local memory, use the 
__local keyword; for example:
__local float localBuffer[64]

These declarations can be either in the parameters to the kernel call or in the 
body of the kernel. The __local syntax allocates a single block of memory, which 
is shared across all work-items in the workgroup. 

To write data into local memory, write it into an array allocated with __local. For 
example:

localBuffer[i] = 5.0;

A typical access pattern is for each work-item to collaboratively write to the local 
memory: each work-item writes a subsection, and as the work-items execute in 
parallel they write the entire array. Combined with proper consideration for the 
access pattern and bank alignment, these collaborative write approaches can 
lead to highly efficient memory accessing. Local memory is consistent across 
work-items only at a work-group barrier; thus, before reading the values written 
collaboratively, the kernel must include a barrier() instruction. 

The following example is a simple kernel section that collaboratively writes, then 
reads from, local memory:

__kernel void localMemoryExample (__global float *In, __global float *Out) {
__local float localBuffer[64];
uint tx = get_local_id(0);
uint gx = get_global_id(0);

// Initialize local memory:
// Copy from this work-group’s section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];  

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE); 

// Toy computation to compute a partial factorial, shows re-use from local  
float f = localBuffer[tx];
for (uint i=tx+1; i<64; i++) {
f *= localBuffer[i]; 
}
Out[gx] = f;
}
 

Note the host code cannot read from, or write to, local memory. Only the kernel 
can access local memory.

Local memory is consistent across work-items only at a work-group barrier; thus, 
before reading the values written collaboratively, the kernel must include a 
barrier() instruction. An important optimization is the case where the local 
work-group size is less than, or equal to, the wavefront size. Because the 
wavefront executes as an atomic unit, the explicit barrier operation is not 
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required. The compiler automatically removes these barriers if the kernel 
specifies a reqd_work_group_size

(see section 5.8 of the OpenCL Specification) that is less than the wavefront size. 
Developers are strongly encouraged to include the barriers where appropriate, 
and rely on the compiler to remove the barriers when possible, rather than 
manually removing the barriers(). This technique results in more portable 
code, including the ability to run kernels on CPU devices.

3.3 Constant Memory Optimization

The AMD implementation of OpenCL provides three levels of performance for the 
“constant” memory type.

1. Simple Direct-Addressing Patterns

Very high bandwidth can be attained when the compiler has available the 
constant address at compile time and can embed the constant address into 
the instruction. Each processing element can load up to 4x4-byte direct-
addressed constant values each cycle. Typically, these cases are limited to 
simple non-array constants and function parameters. The GPU loads the 
constants into a hardware cache at the beginning of the clause that uses the 
constants. The cache is a tagged cache, typically each 8k blocks is shared 
among four compute units. If the constant data is already present in the 
constant cache, the load is serviced by the cache and does not require any 
global memory bandwidth. The constant cache size for each device varies 
from 4k to 48k per GPU.

2. Same Index

Hardware acceleration also takes place when all work-items in a wavefront 
reference the same constant address. In this case, the data is loaded from 
memory one time, stored in the L1 cache, and then broadcast to all wave-
fronts. This can reduce significantly the required memory bandwidth.

3. Varying Index

More sophisticated addressing patterns, including the case where each work-
item accesses different indices, are not hardware accelerated and deliver the 
same performance as a global memory read with the potential for cache hits.

To further improve the performance of the AMD OpenCL stack, two methods 
allow users to take advantage of hardware constant buffers. These are: 

1. Globally scoped constant arrays. These arrays are initialized, globally 
scoped, and in the constant address space (as specified in section 6.5.3 of 
the OpenCL specification). If the size of an array is below 64 kB, it is placed 
in hardware constant buffers; otherwise, it uses global memory. An example 
of this is a lookup table for math functions.

2. Per-pointer attribute specifying the maximum pointer size. This is specified 
using the max_constant_size(N) attribute. The attribute form conforms to 
section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to 
top-level kernel function arguments in the constant address space. This 
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restriction prevents a pointer of one size from being passed as an argument 
to a function that declares a different size. It informs the compiler that indices 
into the pointer remain inside this range and it is safe to allocate a constant 
buffer in hardware, if it fits. Using a constant pointer that goes outside of this 
range results in undefined behavior. All allocations are aligned on the 16-byte 
boundary. For example:

kernel void mykernel(global int* a,
constant int* b __attribute__((max_constant_size (65536))) 
)
{
size_t idx = get_global_id(0);
a[idx] = b[idx & 0x3FFF];
}

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to 
query the device for the maximum number of constant buffers the kernel can 
support. This value might differ from the maximum number of hardware constant 
buffers available. In this case, if the number of hardware constant buffers is less 
than the CL_DEVICE_MAX_CONSTANT_ARGS, the compiler allocates the largest 
constant buffers in hardware first and allocates the rest of the constant buffers in 
global memory. As an optimization, if a constant pointer A uses n bytes of 
memory, where n is less than 64 kB, and constant pointer B uses m bytes of 
memory, where m is less than (64 kB – n) bytes of memory, the compiler can 
allocate the constant buffer pointers in a single hardware constant buffer. This 
optimization can be applied recursively by treating the resulting allocation as a 
single allocation and finding the next smallest constant pointer that fits within the 
space left in the constant buffer. 

3.4 OpenCL Memory Resources: Capacity and Performance

Table 3.6 summarizes the hardware capacity and associated performance for the 
structures associated with the five OpenCL Memory Types. This information 
specific to the ATI Radeon HD5870 GPUs with 1 GB video memory.

Table 3.6 Hardware Performance Parameters

The compiler tries to map private memory allocations to the pool of GPRs in the 
GPU. In the event GPRs are not available, private memory is mapped to the 

OpenCL 
Memory Type

Hardware Resource Size/CU Size/GPU
Peak Read 

Bandwidth/ Stream 
Core

Private GPRs 256k 5120k 48 bytes/cycle

Local LDS 32k 640k 8 bytes/cycle

Constant Direct-addressed constant 48k 16 bytes/cycle

Same-indexed constant 4 bytes/cycle

Varying-indexed constant ~0.6 bytes/cycle

Images L1 Cache 8k 160k 4 bytes/cycle

L2 Cache 512k ~1.6 bytes/cycle

Global Global Memory 1G ~0.6 bytes/cycle
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“scratch” region, which has the same performance as global memory. 
Section 3.6.2, “Resource Limits on Active Wavefronts,” page 3-24, has more 
information on register allocation and identifying when the compiler uses the 
scratch region. GPRs provide the highest-bandwidth access of any hardware 
resource. In addition to reading up to 48 bytes/cycle from the register file, the 
hardware can access results produced in the previous cycle (through the 
Previous Vector/Previous Scalar register) without consuming any register file 
bandwidth. GPRs have some restrictions about which register ports can be read 
on each cycle; but generally, these are not exposed to the OpenCL programmer.

Same-indexed constants can be cached in the L1 and L2 cache. Note that 
“same-indexed” refers to the case where all work-items in the wavefront 
reference the same constant index on the same cycle. The performance shown 
assumes an L1 cache hit. 

Varying-indexed constants use the same path as global memory access and are 
subject to the same bank and alignment constraints described in Section 3.1, 
“Global Memory Optimization,” page 3-1.

The L1 and L2 caches are currently only enabled for images and same-indexed 
constants. Read only buffers can be cached in L1 and L2. To enable this, the 
developer must indicate to the compiler that the buffer is read only and does not 
alias with other buffers. For example, use:

kernel void mykernel(__global int const * restrict mypointerName)

The const indicates to the compiler that mypointerName is read only from the 
kernel, and the restrict attribute indicates to the compiler that no other pointer 
aliases with mypointerName. 

The L1 cache can service up to four address request per cycle, each delivering 
up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes; 
smaller access sizes/requests result in a lower peak bandwidth for the L1 cache. 
Using float4 with images increases the request size and can deliver higher L1 
cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to 
64 bytes/cycle. The ATI Radeon HD 5870 GPU has eight memory channels; 
thus, it can deliver up to 512bytes/cycle; divided among 320 stream cores, this 
provides up to ~1.6 bytes/cycle for each stream core.

Global Memory bandwidth is limited by external pins, not internal bus bandwidth. 
The ATI Radeon HD 5870 GPU supports up to 153 GB/s of memory bandwidth 
which is an average of 0.6 bytes/cycle for each stream core.

Note that Table 3.6 shows the performance for the ATI Radeon HD 5870 GPU. 
The “Size/Compute Unit” column and many of the bandwidths/processing 
element apply to all Evergreen-class GPUs; however, the “Size/GPU” column 
and the bandwidths for varying-indexed constant, L2, and global memory vary 
across different GPU devices. 
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3.5 Using LDS or L1 Cache

There are a number of considerations when deciding between LDS and L1 cache 
for a given algorithm.

LDS supports read/modify/write operations, as well as atomics. It is well-suited 
for code that requires fast read/write, read/modify/write, or scatter operations that 
otherwise are directed to global memory. On current AMD hardware, L1 is part 
of the read path; hence, it is suited to cache-read-sensitive algorithms, such as 
matrix multiplication or convolution.

LDS is typically larger than L1 (for example: 32 kB vs 8 kB on Cypress). If it is 
not possible to obtain a high L1 cache hit rate for an algorithm, the larger LDS 
size can help. The theoretical LDS peak bandwidth is 2 TB/s, compared to L1 at 
1 TB/sec. Currently, OpenCL is limited to 1 TB/sec LDS bandwidth.

The native data type for L1 is a four-vector of 32-bit words. On L1, fill and read 
addressing are linked. It is important that L1 is initially filled from global memory 
with a coalesced access pattern; once filled, random accesses come at no extra 
processing cost. 

Currently, the native format of LDS is a 32-bit word. The theoretical LDS peak 
bandwidth is achieved when each thread operates on a two-vector of 32-bit 
words (16 threads per clock operate on 32 banks). If an algorithm requires 
coalesced 32-bit quantities, it maps well to LDS. The use of four-vectors or larger 
can lead to bank conflicts. 

From an application point of view, filling LDS from global memory, and reading 
from it, are independent operations that can use independent addressing. Thus, 
LDS can be used to explicitly convert a scattered access pattern to a coalesced 
pattern for read and write to global memory. Or, by taking advantage of the LDS 
read broadcast feature, LDS can be filled with a coalesced pattern from global 
memory, followed by all threads iterating through the same LDS words 
simultaneously.

LDS is shared between the work-items in a work-group. Sharing across work-
groups is not possible because OpenCL does not guarantee that LDS is in a 
particular state at the beginning of work-group execution. L1 content, on the other 
hand, is independent of work-group execution, so that successive work-groups 
can share the content in the L1 cache of a given Vector ALU. However, it 
currently is not possible to explicitly control L1 sharing across work-groups.

The use of LDS is linked to GPR usage and wavefront-per-Vector ALU count. 
Better sharing efficiency requires a larger work-group, so that more work items 
share the same LDS. Compiling kernels for larger work groups typically results 
in increased register use, so that fewer wavefronts can be scheduled 
simultaneously per Vector ALU. This, in turn, reduces memory latency hiding. 
Requesting larger amounts of LDS per work-group results in fewer wavefronts 
per Vector ALU, with the same effect.
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LDS typically involves the use of barriers, with a potential performance impact. 
This is true even for read-only use cases, as LDS must be explicitly filled in from 
global memory (after which a barrier is required before reads can commence).

3.6 NDRange and Execution Range Optimization

Probably the most effective way to exploit the potential performance of the GPU 
is to provide enough threads to keep the device completely busy. The 
programmer specifies a three-dimensional NDRange over which to execute the 
kernel; bigger problems with larger NDRanges certainly help to more effectively 
use the machine. The programmer also controls how the global NDRange is 
divided into local ranges, as well as how much work is done in each work-item, 
and which resources (registers and local memory) are used by the kernel. All of 
these can play a role in how the work is balanced across the machine and how 
well it is used. This section introduces the concept of latency hiding, how many 
wavefronts are required to hide latency on AMD GPUs, how the resource usage 
in the kernel can impact the active wavefronts, and how to choose appropriate 
global and local work-group dimensions.

3.6.1 Hiding ALU and Memory Latency

The read-after-write latency for most arithmetic operations (a floating-point add, 
for example) is only eight cycles. For most AMD GPUs, each compute unit can 
execute 16 VLIW instructions on each cycle. Each wavefront consists of 64 work-
items; each compute unit executes a quarter-wavefront on each cycle, and the 
entire wavefront is executed in four consecutive cycles. Thus, to hide eight cycles 
of latency, the program must schedule two wavefronts. The compute unit 
executes the first wavefront on four consecutive cycles; it then immediately 
switches and executes the other wavefront for four cycles. Eight cycles have 
elapsed, and the ALU result from the first wavefront is ready, so the compute unit 
can switch back to the first wavefront and continue execution. Compute units 
running two wavefronts (128 threads) completely hide the ALU pipeline latency.

Global memory reads generate a reference to the off-chip memory and 
experience a latency of 300 to 600 cycles. The wavefront that generates the 
global memory access is made idle until the memory request completes. During 
this time, the compute unit can process other independent wavefronts, if they are 
available.

Kernel execution time also plays a role in hiding memory latency: longer kernels 
keep the functional units busy and effectively hide more latency. To better 
understand this concept, consider a global memory access which takes 400 
cycles to execute. Assume the compute unit contains many other wavefronts, 
each of which performs five ALU instructions before generating another global 
memory reference. As discussed previously, the hardware executes each 
instruction in the wavefront in four cycles; thus, all five instructions occupy the 
ALU for 20 cycles. Note the compute unit interleaves two of these wavefronts 
and executes the five instructions from both wavefronts (10 total instructions) in 
40 cycles. To fully hide the 400 cycles of latency, the compute unit requires 
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(400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront 
contains 10 instructions rather than 5, the wavefront pair would consume 80 
cycles of latency, and only 10 wavefronts would be required to hide the 400 
cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the 
available wavefronts, and thus it is not useful to try to predict exactly which ALU 
block executes when trying to hide latency. Instead, consider the overall ratio of 
ALU operations to fetch operations – this metric is reported by the CodeXL GPU 
Profiler in the ALUFetchRatio counter. Each ALU operation keeps the compute 
unit busy for four cycles, so you can roughly divide 500 cycles of latency by 
(4*ALUFetchRatio) to determine how many wavefronts must be in-flight to hide 
that latency. Additionally, a low value for the ALUBusy performance counter can 
indicate that the compute unit is not providing enough wavefronts to keep the 
execution resources in full use. (This counter also can be low if the kernel 
exhausts the available DRAM bandwidth. In this case, generating more 
wavefronts does not improve performance; it can reduce performance by creating 
more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve 
performance; once the GPU has enough wavefronts to hide latency, additional 
active wavefronts provide little or no performance benefit. A closely related metric 
to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active 
wavefronts to the maximum number of possible wavefronts supported by the 
hardware. Many of the important optimization targets and resource limits are 
expressed in wavefronts/compute units, so this section uses this metric rather 
than the related “occupancy” term.

3.6.2 Resource Limits on Active Wavefronts

AMD GPUs have two important global resource constraints that limit the number 
of in-flight wavefronts:

• Each compute unit supports a maximum of eight work-groups. Recall that 
AMD OpenCL supports up to 256 work-items (four wavefronts) per work-
group; effectively, this means each compute unit can support up to 32 
wavefronts.

• Each GPU has a global (across all compute units) limit on the number of 
active wavefronts. The GPU hardware is generally effective at balancing the 
load across available compute units. Thus, it is useful to convert this global 
limit into an average wavefront/compute unit so that it can be compared to 
the other limits discussed in this section. For example, the ATI Radeon HD 
5870 GPU has a global limit of 496 wavefronts, shared among 20 compute 
units. Thus, it supports an average of 24.8 wavefronts/compute unit. Some 
AMD GPUs support up to 96 wavefronts/compute unit.

These limits are largely properties of the hardware and, thus, difficult for 
developers to control directly. Fortunately, these are relatively generous limits. 
Frequently, the register and LDS usage in the kernel determines the limit on the 
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number of active wavefronts/compute unit, and these can be controlled by the 
developer. 

3.6.2.1  GPU Registers

Each compute unit provides 16384 GP registers, and each register contains 
4x32-bit values (either single-precision floating point or a 32-bit integer). The total 
register size is 256 kB of storage per compute unit. These registers are shared 
among all active wavefronts on the compute unit; each kernel allocates only the 
registers it needs from the shared pool. This is unlike a CPU, where each thread 
is assigned a fixed set of architectural registers. However, using many registers 
in a kernel depletes the shared pool and eventually causes the hardware to 
throttle the maximum number of active wavefronts. 

Table 3.7 shows how the registers used in the kernel impacts the register-limited 
wavefronts/compute unit.

For example, a kernel that uses 30 registers (120x32-bit values) can run with 
eight active wavefronts on each compute unit. Because of the global limits 
described earlier, each compute unit is limited to 32 wavefronts; thus, kernels can 
use up to seven registers (28 values) without affecting the number of 
wavefronts/compute unit. Finally, note that in addition to the GPRs shown in the 
table, each kernel has access to four clause temporary registers.

Table 3.7 Impact of Register Type on Wavefronts/CU

GP Registers used 
by Kernel

Register-Limited
Wavefronts / Compute-Unit

0-1 248

2 124

3 82

4 62

5 49

6 41

7 35

8 31

9 27

10 24

11 22

12 20

13 19

14 17

15 16

16 15

17 14

18-19 13
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AMD provides the following tools to examine the number of general-purpose 
registers (GPRs) used by the kernel.

• The CodeXL GPU Profiler displays the number of GPRs used by the kernel. 

• Alternatively, the CodeXL GPU Profiler generates the ISA dump , which then 
can be searched for the string :NUM_GPRS.

• The AMD CodeXL Static Kernel Analyzer also shows the GPR used by the 
kernel, across a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it 
cannot fit all the live values into registers. Spill code uses long-latency global 
memory and can have a large impact on performance. The CodeXL GPU Profiler 
reports the static number of register spills in the ScratchReg field. Generally, it 
is a good idea to re-write the algorithm to use fewer GPRs, or tune the work-
group dimensions specified at launch time to expose more registers/kernel to the 
compiler, in order to reduce the scratch register usage to 0.

3.6.2.2  Specifying the Default Work-Group Size at Compile-Time

The number of registers used by a work-item is determined when the kernel is 
compiled. The user later specifies the size of the work-group. Ideally, the OpenCL 
compiler knows the size of the work-group at compile-time, so it can make 
optimal register allocation decisions. Without knowing the work-group size, the 
compiler must assume an upper-bound size to avoid allocating more registers in 
the work-item than the hardware actually contains.

For example, if the compiler allocates 70 registers for the work-item, Table 3.7 
shows that only three wavefronts (192 work-items) are supported. If the user later 
launches the kernel with a work-group size of four wavefronts (256 work-items), 
the launch fails because the work-group requires 70*256=17920 registers, which 
is more than the hardware allows. To prevent this from happening, the compiler 
performs the register allocation with the conservative assumption that the kernel 
is launched with the largest work-group size (256 work-items). The compiler 
guarantees that the kernel does not use more than 62 registers (the maximum 

19-20 12

21-22 11

23-24 10

25-27 9

28-31 8

32-35 7

36-41 6

42-49 5

50-62 4

63-82 3

83-124 2

GP Registers used 
by Kernel

Register-Limited
Wavefronts / Compute-Unit
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number of registers which supports a work-group with four wave-fronts), and 
generates low-performing register spill code, if necessary. 

Fortunately, OpenCL provides a mechanism to specify a work-group size that the 
compiler can use to optimize the register allocation. In particular, specifying a 
smaller work-group size at compile time allows the compiler to allocate more 
registers for each kernel, which can avoid spill code and improve performance. 
The kernel attribute syntax is:

__attribute__((reqd_work_group_size(X, Y, Z)))

Section 6.7.2 of the OpenCL specification explains the attribute in more detail.

3.6.2.3  Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active 
wavefronts/compute unit. Each compute unit has 32k of LDS, which is shared 
among all active work-groups. LDS is allocated on a per-work-group granularity, 
so it is possible (and useful) for multiple wavefronts to share the same local 
memory allocation. However, large LDS allocations eventually limits the number 
of workgroups that can be active. Table 3.8 provides more details about how LDS 
usage can impact the wavefronts/compute unit.

Table 3.8 Effect of LDS Usage on Wavefronts/CU 

1. Assumes each work-group uses four wavefronts (the maximum supported by the AMD 
OpenCL SDK).

AMD provides the following tools to examine the amount of LDS used by the 
kernel:

• The CodeXL GPU Profiler displays the LDS usage. See the LocalMem 
counter.

Local Memory 
/  Work-Group

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 4 
Wavefronts/ 
Work-Group)

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 3 
Wavefronts/ 
Work-Group)

LDS-Limited 
Wavefronts/ 

Compute-Unit  
(Assume 2 
Wavefronts/ 
Work-Group)

LDS-Limited 
Work-Groups 

(Assume 1 
Wavefront / 

Work-Group)

<=4K 32 24 16 8

4.0K-4.6K 28 21 14 7

4.6K-5.3K 24 18 12 6

5.3K-6.4K 20 15 10 5

6.4K-8.0K 16 12 8 4

8.0K-10.7K 12 9 6 3

10.7K-16.0K 8 6 4 2

16.0K-32.0K 4 3 2 1
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• Alternatively, use the CodeXL GPU Profiler to generate the ISA dump , then 
search for the string SQ_LDS_ALLOC:SIZE in the ISA dump. Note that the 
value is shown in hexadecimal format.

3.6.3 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global 
NDRange. The partition of the NDRange can have a significant impact on 
performance; thus, it is recommended that the developer explicitly specify the 
global (#work-groups) and local (#work-items/work-group) dimensions, rather 
than rely on OpenCL to set these automatically (by setting local_work_size to 
NULL in clEnqueueNDRangeKernel). This section explains the guidelines for 
partitioning at the global, local, and work/kernel levels.

3.6.3.1  Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted 
with a clEnqueueNDRangeKernel command. The hardware limits the available in-
flight threads, but the OpenCL SDK automatically partitions a large number of 
work-groups into smaller pieces that the hardware can process. For some large 
workloads, the amount of memory available to the GPU can be a limitation; the 
problem might require so much memory capacity that the GPU cannot hold it all. 
In these cases, the programmer must partition the workload into multiple 
clEnqueueNDRangeKernel commands. The available device memory can be 
obtained by querying clDeviceInfo.

At a minimum, ensure that the workload contains at least as many work-groups 
as the number of compute units in the hardware. Work-groups cannot be split 
across multiple compute units, so if the number of work-groups is less than the 
available compute units, some units are idle. Evergreen and Northern Islands 
GPUs have 2-24 compute units. (Use 
clGetDeviceInfo(…CL_DEVICE_MAX_COMPUTE_UNITS) to determine the value 
dynamically). 

3.6.3.2  Local Work Size (#Work-Items per Work-Group)

OpenCL limits the number of work-items in each group. Call clDeviceInfo with 
the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of 
work-groups supported by the hardware. The latest generation AMD GPUs 
support a maximum of 256 work-items per work-group. Note the number of work-
items is the product of all work-group dimensions; for example, a work-group with 
dimensions 32x16 requires 512 work-items, which is not allowed with the current 
AMD OpenCL runtime. 

The fundamental unit of work on AMD GPUs is called a wavefront. Each 
wavefront consists of 64 work-items; thus, the optimal local work size is an 
integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work-
group.

Work-items in the same work-group can share data through LDS memory and 
also use high-speed local atomic operations. Thus, larger work-groups enable 
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more work-items to efficiently share data, which can reduce the amount of slower 
global communication. However, larger work-groups reduce the number of global 
work-groups, which, for small workloads, could result in idle compute units. 
Generally, larger work-groups are better as long as the global range is big 
enough to provide 1-2 Work-Groups for each compute unit in the system; for 
small workloads it generally works best to reduce the work-group size in order to 
avoid idle compute units. Note that it is possible to make the decision 
dynamically, when the kernel is launched, based on the launch dimensions and 
the target device characteristics.

3.6.3.3  Moving Work to the Kernel

Often, work can be moved from the work-group into the kernel. For example, a 
matrix multiply where each work-item computes a single element in the output 
array can be written so that each work-item generates multiple elements. This 
technique can be important for effectively using the processing elements 
available in the five-wide (or four-wide, depending on the GPU type) VLIW 
processing engine (see the ALUPacking performance counter reported by the 
CodeXL GPU Profiler). The mechanics of this technique often is as simple as 
adding a for loop around the kernel, so that the kernel body is run multiple times 
inside this loop, then adjusting the global work size to reduce the work-items. 
Typically, the local work-group is unchanged, and the net effect of moving work 
into the kernel is that each work-group does more effective processing, and fewer 
global work-groups are required.

When moving work to the kernel, often it is best to combine work-items that are 
separated by 16 in the NDRange index space, rather than combining adjacent 
work-items. Combining the work-items in this fashion preserves the memory 
access patterns optimal for global and local memory accesses. For example, 
consider a kernel where each kernel accesses one four-byte element in array A. 
The resulting access pattern is: 

If we naively combine four adjacent work-items to increase the work processed 
per kernel, so that the first work-item accesses array elements A+0 to A+3 on 
successive cycles, the overall access pattern is:

Work-item 0 1 2 3
…

Cycle0 A+0 A+1 A+2 A+3

Work-item 0 1 2 3 4 5

...

Cycle0 A+0 A+4 A+8 A+12 A+16 A+20

Cycle1 A+1 A+5 A+9 A+13 A+17 A+21

Cycle2 A+2 A+6 A+10 A+14 A+18 A+22

Cycle3 A+3 A+7 A+11 A+15 A+19 A+23
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This pattern shows that on the first cycle the access pattern contains “holes.” 
Also, this pattern results in bank conflicts on the LDS. A better access pattern is 
to combine four work-items so that the first work-item accesses array elements 
A+0, A+16, A+32, and A+48. The resulting access pattern is: 

Note that this access patterns preserves the sequentially-increasing addressing 
of the original kernel and generates efficient global and LDS memory references.

Increasing the processing done by the kernels can allow more processing to be 
done on the fixed pool of local memory available to work-groups. For example, 
consider a case where an algorithm requires 32x32 elements of shared memory. 
If each work-item processes only one element, it requires 1024 work-items/work-
group, which exceeds the maximum limit. Instead, each kernel can be written to 
process four elements, and a work-group of 16x16 work-items could be launched 
to process the entire array. A related example is a blocked algorithm, such as a 
matrix multiply; the performance often scales with the size of the array that can 
be cached and used to block the algorithm. By moving processing tasks into the 
kernel, the kernel can use the available local memory rather than being limited 
by the work-items/work-group. 

3.6.3.4  Work-Group Dimensions vs Size

The local NDRange can contain up to three dimensions, here labeled X, Y, and 
Z. The X dimension is returned by get_local_id(0), Y is returned by 
get_local_id(1), and Z is returned by get_local_id(2). The GPU hardware 
schedules the kernels so that the X dimensions moves fastest as the work-items 
are packed into wavefronts. For example, the 128 threads in a 2D work-group of 
dimension 32x4 (X=32 and Y=4) would be packed into two wavefronts as follows 
(notation shown in X,Y order):

Work-item 0 1 2 3 4 5

…

Cycle0 A+0 A+1 A+2 A+3 A+4 A+5

Cycle1 A+16 A+17 A+18 A+19 A+20 A+21

Cycle2 A+32 A+33 A+34 A+35 A+36 A+37

Cycle3 A+48 A+49 A+50 A+51 A+52 A+53

WaveFront0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

16,1 17,1 18,1 19,1 20,1 21,1 22,1 23,1 24,1 25,1 26,1 27,1 28,1 29,1 30,1 31,1

WaveFront1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

16,2 17,2 18,2 19,2 20,2 21,2 22,2 23,2 24,2 25,2 26,2 27,2 28,2 29,2 30,2 31,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

16,3 17,3 18,3 19,3 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3 30,3 31,3
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The total number of work-items in the work-group is typically the most important 
parameter to consider, in particular when optimizing to hide latency by increasing 
wavefronts/compute unit. However, the choice of XYZ dimensions for the same 
overall work-group size can have the following second-order effects.

• Work-items in the same quarter-wavefront execute on the same cycle in the 
processing engine. Thus, global memory coalescing and local memory bank 
conflicts can be impacted by dimension, particularly if the fast-moving X 
dimension is small. Typically, it is best to choose an X dimension of at least 
16, then optimize the memory patterns for a block of 16 work-items which 
differ by 1 in the X dimension.

• Work-items in the same wavefront have the same program counter and 
execute the same instruction on each cycle. The packing order can be 
important if the kernel contains divergent branches. If possible, pack together 
work-items that are likely to follow the same direction when control-flow is 
encountered. For example, consider an image-processing kernel where each 
work-item processes one pixel, and the control-flow depends on the color of 
the pixel. It might be more likely that a square of 8x8 pixels is the same color 
than a 64x1 strip; thus, the 8x8 would see less divergence and higher 
performance.

• When in doubt, a square 16x16 work-group size is a good start.

3.6.4 Optimizing for Cedar

To focus the discussion, this section has used specific hardware characteristics 
that apply to most of the Evergreen series. The value Evergreen part, referred to 
as Cedar and used in products such as the ATI Radeon HD 5450 GPU, has 
different architecture characteristics, as shown below.

Note the maximum workgroup size can be obtained with 
clGetDeviceInfo...(...,CL_DEVICE_MAX_WORK_GROUP_SIZE,...). 
Applications must ensure that the requested kernel launch dimensions that are 
fewer than the threshold reported by this API call.

The difference in total register size can impact the compiled code and cause 
register spill code for kernels that were tuned for other devices. One technique 
that can be useful is to specify the required work-group size as 128 (half the 
default of 256). In this case, the compiler has the same number of registers 
available as for other devices and uses the same number of registers. The 

Evergreen 
Cypress, Juniper, 

Redwood

Evergreen 
Cedar

Work-items/Wavefront 64 32

Stream Cores / CU 16 8

GP Registers / CU 16384 8192

Local Memory Size 32K 32K

Maximum Work-Group Size 256 128
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developer must ensure that the kernel is launched with the reduced work size 
(128) on Cedar-class devices.

3.6.5 Summary of NDRange Optimizations

As shown above, execution range optimization is a complex topic with many 
interacting variables and which frequently requires some experimentation to 
determine the optimal values. Some general guidelines are:

• Select the work-group size to be a multiple of 64, so that the wavefronts are 
fully populated.

• Always provide at least two wavefronts (128 work-items) per compute unit. 
For a ATI Radeon HD 5870 GPU, this implies 40 wave-fronts or 2560 work-
items. If necessary, reduce the work-group size (but not below 64 work-
items) to provide work-groups for all compute units in the system. 

• Latency hiding depends on both the number of wavefronts/compute unit, as 
well as the execution time for each kernel. Generally, two to eight 
wavefronts/compute unit is desirable, but this can vary significantly, 
depending on the complexity of the kernel and the available memory 
bandwidth. The CodeXL GPU Profiler and associated performance counters 
can help to select an optimal value.

3.7 Using Multiple OpenCL Devices

The AMD OpenCL runtime supports both CPU and GPU devices. This section 
introduces techniques for appropriately partitioning the workload and balancing it 
across the devices in the system. 

3.7.1 CPU and GPU Devices

Table 3.9 lists some key performance characteristics of two exemplary CPU and 
GPU devices: a quad-core AMD Phenom II X4 processor running at 2.8 GHz, 
and a mid-range ATI Radeon 5670 GPU running at 750 MHz. The “best” device 
in each characteristic is highlighted, and the ratio of the best/other device is 
shown in the final column.

Table 3.9 CPU and GPU Performance Characteristics

CPU GPU Winner Ratio

Example Device AMD Phenom II X4 ATI Radeon HD 5670

Core Frequency 2800 MHz 750 MHz 4 X

Compute Units 4 5 1.3 X

Approx. Power1 95 W 64 W 1.5 X

Approx. Power/Compute Unit 19 W 13 W 1.5 X

Peak Single-Precision                   
Billion Floating-Point Ops/Sec

90 600 7 X

Approx GFLOPS/Watt 0.9 9.4 10 X

Max In-flight HW Threads 4 15872 3968 X
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The GPU excels at high-throughput: the peak execution rate (measured in 
FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher 
than the CPU. The GPU also consumes approximately 65% the power of the 
CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher. 
While power efficiency can vary significantly with different devices, GPUs 
generally provide greater power efficiency (flops/watt) than CPUs because they 
optimize for throughput and eliminate hardware designed to hide latency. 

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add 
is 30X faster on the CPU than on the GPU. This is a product of both the CPUs 
higher clock rate (2800 MHz vs 750 MHz for this comparison), as well as the 
operation latency; the CPU is optimized to perform an integer add in just one 
cycle, while the GPU requires eight cycles. The CPU also has a latency-
optimized path to DRAM, while the GPU optimizes for bandwidth and relies on 
many in-flight threads to hide the latency. The ATI Radeon HD 5670 GPU, for 
example, supports more than 15,000 in-flight threads and can switch to a new 
thread in a single cycle. The CPU supports only four hardware threads, and 
thread-switching requires saving and restoring the CPU registers from memory. 
The GPU requires many active threads to both keep the execution resources 
busy, as well as provide enough threads to hide the long latency of cache 
misses.

Each GPU thread has its own register state, which enables the fast single-cycle 
switching between threads. Also, GPUs can be very efficient at gather/scatter 
operations: each thread can load from any arbitrary address, and the registers 
are completely decoupled from the other threads. This is substantially more 
flexible and higher-performing than a classic Vector ALU-style architecture (such 
as SSE on the CPU), which typically requires that data be accessed from 
contiguous and aligned memory locations. SSE supports instructions that write 
parts of a register (for example, MOVLPS and MOVHPS, which write the upper and 
lower halves, respectively, of an SSE register), but these instructions generate 
additional microarchitecture dependencies and frequently require additional pack 
instructions to format the data correctly. 

In contrast, each GPU thread shares the same program counter with 63 other 
threads in a wavefront. Divergent control-flow on a GPU can be quite expensive 

Simultaneous Executing Threads 4 80 20 X

Memory Bandwidth 26 GB/s 64 GB/s 2.5 X

Int Add latency 0.4 ns 10.7 ns 30 X

FP Add Latency 1.4 ns 10.7 ns 7 X

Approx DRAM Latency 50 ns 300 ns 6 X

L2+L3 cache capacity 8192 KB 128 kB 64 X

Approx Kernel Launch Latency 25 μs 225 μs 9 X

1. For the power specifications of the AMD Phenom II x4, see http://www.amd.com/us/products/desk-
top/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx. For the power specifica-
tions of the ATI Radeon HD 5670, see http://www.amd.com/us/products/desktop/graphics/ati-radeon-
hd-5000/ati-radeon-hd-5670-overview/Pages/ati-radeon-hd-5670-specifications.aspx.
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and can lead to significant under-utilization of the GPU device. When control flow 
substantially narrows the number of valid work-items in a wave-front, it can be 
faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this 
example, the CPU device contains 512k L2 cache/core plus a 6 MB L3 cache 
that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU 
device contains only 128 k cache shared by the five compute units. The larger 
CPU cache serves both to reduce the average memory latency and to reduce 
memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 9X difference in kernel launch latency. The GPU 
launch time includes both the latency through the software stack, as well as the 
time to transfer the compiled kernel and associated arguments across the PCI-
express bus to the discrete GPU. Notably, the launch time does not include the 
time to compile the kernel. The CPU can be the device-of-choice for small, quick-
running problems when the overhead to launch the work on the GPU outweighs 
the potential speedup. Often, the work size is data-dependent, and the choice of 
device can be data-dependent as well. For example, an image-processing 
algorithm may run faster on the GPU if the images are large, but faster on the 
CPU when the images are small.

The differences in performance characteristics present interesting optimization 
opportunities. Workloads that are large and data parallel can run orders of 
magnitude faster on the GPU, and at higher power efficiency. Serial or small 
parallel workloads (too small to efficiently use the GPU resources) often run 
significantly faster on the CPU devices. In some cases, the same algorithm can 
exhibit both types of workload. A simple example is a reduction operation such 
as a sum of all the elements in a large array. The beginning phases of the 
operation can be performed in parallel and run much faster on the GPU. The end 
of the operation requires summing together the partial sums that were computed 
in parallel; eventually, the width becomes small enough so that the overhead to 
parallelize outweighs the computation cost, and it makes sense to perform a 
serial add. For these serial operations, the CPU can be significantly faster than 
the GPU. 

3.7.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run 
substantially faster and at better energy efficiency compared to a CPU device. 
Also, once an algorithm has been coded in the data-parallel task style for 
OpenCL, the same code typically can scale to run on GPUs with increasing 
compute capability (that is more compute units) or even multiple GPUs (with a 
little more work). 

For some algorithms, the advantages of the GPU (high computation throughput, 
latency hiding) are offset by the advantages of the CPU (low latency, caches, fast 
launch time), so that the performance on either devices is similar. This case is 
more common for mid-range GPUs and when running more mainstream 
algorithms. If the CPU and the GPU deliver similar performance, the user can 
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get the benefit of either improved power efficiency (by running on the GPU) or 
higher peak performance (use both devices). 

Usually, when the data size is small, it is faster to use the CPU because the start-
up time is quicker than on the GPU due to a smaller driver overhead and 
avoiding the need to copy buffers from the host to the device.

3.7.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single 
OpenCL device. Thus, using multiple devices requires the developer to create a 
separate queue for each device, then partition the work between the available 
command queues. 

A simple scheme for partitioning work between devices would be to statically 
determine the relative performance of each device, partition the work so that 
faster devices received more work, launch all the kernels, and then wait for them 
to complete. In practice, however, this rarely yields optimal performance. The 
relative performance of devices can be difficult to determine, in particular for 
kernels whose performance depends on the data input. Further, the device 
performance can be affected by dynamic frequency scaling, OS thread 
scheduling decisions, or contention for shared resources, such as shared caches 
and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong” 
at the beginning can result in significantly lower performance, since some 
devices finish and become idle while the whole system waits for the single, 
unexpectedly slow device. 

For these reasons, a dynamic scheduling algorithm is recommended. In this 
approach, the workload is partitioned into smaller parts that are periodically 
scheduled onto the hardware. As each device completes a part of the workload, 
it requests a new part to execute from the pool of remaining work. Faster devices, 
or devices which work on easier parts of the workload, request new input faster, 
resulting in a natural workload balancing across the system. The approach 
creates some additional scheduling and kernel submission overhead, but 
dynamic scheduling generally helps avoid the performance cliff from a single bad 
initial scheduling decision, as well as higher performance in real-world system 
environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling 
algorithms for multi-core CPUs, and it is natural to consider extending these 
scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new 
aspects to the scheduling process:

• Heterogeneous Compute Devices

Most existing multi-core schedulers target only homogenous computing 
devices. When scheduling across both CPU and GPU devices, the scheduler 
must be aware that the devices can have very different performance 
characteristics (10X or more) for some algorithms. To some extent, dynamic 
scheduling is already designed to deal with heterogeneous workloads (based 
on data input the same algorithm can have very different performance, even 
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when run on the same device), but a system with heterogeneous devices 
makes these cases more common and more extreme. Here are some 
suggestions for these situations.

– The scheduler should support sending different workload sizes to 
different devices. GPUs typically prefer larger grain sizes, and higher-
performing GPUs prefer still larger grain sizes.

– The scheduler should be conservative about allocating work until after it 
has examined how the work is being executed. In particular, it is 
important to avoid the performance cliff that occurs when a slow device 
is assigned an important long-running task. One technique is to use 
small grain allocations at the beginning of the algorithm, then switch to 
larger grain allocations when the device characteristics are well-known.

– As a special case of the above rule, when the devices are substantially 
different in performance (perhaps 10X), load-balancing has only a small 
potential performance upside, and the overhead of scheduling the load 
probably eliminates the advantage. In the case where one device is far 
faster than everything else in the system, use only the fast device.

– The scheduler must balance small-grain-size (which increase the 
adaptiveness of the schedule and can efficiently use heterogeneous 
devices) with larger grain sizes (which reduce scheduling overhead).   
Note that the grain size must be large enough to efficiently use the GPU.

• Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a 
command-queue. The host application can enqueue multiple kernels, flush 
the kernels so they begin executing on the device, then use the host core for 
other work. The AMD OpenCL implementation uses a separate thread for 
each command-queue, so work can be transparently scheduled to the GPU 
in the background.

One situation that should be avoided is starving the high-performance GPU 
devices. This can occur if the physical CPU core, which must re-fill the 
device queue, is itself being used as a device. A simple approach to this 
problem is to dedicate a physical CPU core for scheduling chores. The 
device fission extension (see the Extensions appendix of the AMD OpenCL 
User Guide) can be used to reserve a core for scheduling. For example, on 
a quad-core device, device fission can be used to create an OpenCL device 
with only three cores.

Another approach is to schedule enough work to the device so that it can 
tolerate latency in additional scheduling. Here, the scheduler maintains a 
watermark of uncompleted work that has been sent to the device, and refills 
the queue when it drops below the watermark. This effectively increase the 
grain size, but can be very effective at reducing or eliminating device 
starvation. Developers cannot directly query the list of commands in the 
OpenCL command queues; however, it is possible to pass an event to each 
clEnqueue call that can be queried, in order to determine the execution 
status (in particular the command completion time); developers also can 
maintain their own queue of outstanding requests.
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For many algorithms, this technique can be effective enough at hiding latency 
so that a core does not need to be reserved for scheduling. In particular, 
algorithms where the work-load is largely known up-front often work well with 
a deep queue and watermark. Algorithms in which work is dynamically 
created may require a dedicated thread to provide low-latency scheduling.

• Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a 
separate address space. Moving data between the device address space and 
the host requires time-consuming transfers over a relatively slow PCI-
Express bus. Schedulers should be aware of this cost and, for example, 
attempt to schedule work that consumes the result on the same device 
producing it.

CPU and GPU devices share the same memory bandwidth, which results in 
additional interactions of kernel executions.

3.7.4 Synchronization Caveats

The OpenCL functions that enqueue work (clEnqueueNDRangeKernel) merely 
enqueue the requested work in the command queue; they do not cause it to 
begin executing. Execution begins when the user executes a synchronizing 
command, such as clFlush or clWaitForEvents. Enqueuing several commands 
before flushing can enable the host CPU to batch together the command 
submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to 
complete execution of each command before the next command begins. This 
synchronization guarantee can often be leveraged to avoid explicit 
clWaitForEvents() calls between command submissions. Using 
clWaitForEvents() requires intervention by the host CPU and additional 
synchronization cost between the host and the GPU; by leveraging the in-order 
queue property, back-to-back kernel executions can be efficiently handled 
directly on the GPU hardware.

AMD Evergreen GPUs currently do not support the simultaneous execution of 
multiple kernels. For efficient execution, design a single kernel to use all the 
available execution resources on the GPU.

The AMD OpenCL implementation spawns a new thread to manage each 
command queue. Thus, the OpenCL host code is free to manage multiple 
devices from a single host thread. Note that clFinish is a blocking operation; 
the thread that calls clFinish blocks until all commands in the specified 
command-queue have been processed and completed. If the host thread is 
managing multiple devices, it is important to call clFlush for each command-
queue before calling clFinish, so that the commands are flushed and execute 
in parallel on the devices. Otherwise, the first call to clFinish blocks, the 
commands on the other devices are not flushed, and the devices appear to 
execute serially rather than in parallel.
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For low-latency CPU response, it can be more efficient to use a dedicated spin 
loop and not call clFinish() Calling clFinish() indicates that the application 
wants to wait for the GPU, putting the thread to sleep. For low latency, the 
application should use clFlush(), followed by a loop to wait for the event to 
complete. This is also true for blocking maps. The application should use non-
blocking maps followed by a loop waiting on the event. The following provides 
sample code for this.

if (sleep)
{
// this puts host thread to sleep, useful if power is a consideration

or overhead is not a concern
clFinish(cmd_queue_);
}
else
{
// this keeps the host thread awake, useful if latency is a concern
clFlush(cmd_queue_);
error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &eventStatus, NULL);
while (eventStatus > 0)
{
error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &eventStatus, NULL);
Sleep(0);    // be nice to other threads, allow scheduler to find

 other work if possible
// Choose your favorite way to yield, SwitchToThread() for example,

in place of Sleep(0)
}
}

3.7.5 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on 
any device, peak performance for each device is typically obtained by tuning the 
OpenCL kernel for the target device.

Code optimized for the Cypress device (the ATI Radeon™ HD 5870 GPU) 
typically runs well across other members of the Evergreen family. There are 
some differences in cache size and LDS bandwidth that might impact some 
kernels. The Cedar ASIC has a smaller wavefront width and fewer registers (see 
Section 3.6.4, “Optimizing for Cedar,” page 3-31, for optimization information 
specific to this device). 

As described in Section 3.9, “Clause Boundaries,” page 3-46, CPUs and GPUs 
have very different performance characteristics, and some of these impact how 
one writes an optimal kernel. Notable differences include:

• The Vector ALU floating point resources in a CPU (SSE) require the use of 
vectorized types (float4) to enable packed SSE code generation and extract 
good performance from the Vector ALU hardware. The GPU VLIW hardware 
is more flexible and can efficiently use the floating-point hardware even 
without the explicit use of float4. See Section 3.8.4, “VLIW and SSE 
Packing,” page 3-43, for more information and examples; however, code that 
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can use float4 often generates hi-quality code for both the CPU and the AMD 
GPUs.

• The AMD OpenCL CPU implementation runs work-items from the same 
work-group back-to-back on the same physical CPU core. For optimally 
coalesced memory patterns, a common access pattern for GPU-optimized 
algorithms is for work-items in the same wavefront to access memory 
locations from the same cache line. On a GPU, these work-items execute in 
parallel and generate a coalesced access pattern. On a CPU, the first work-
item runs to completion (or until hitting a barrier) before switching to the next. 
Generally, if the working set for the data used by a work-group fits in the CPU 
caches, this access pattern can work efficiently: the first work-item brings a 
line into the cache hierarchy, which the other work-items later hit. For large 
working-sets that exceed the capacity of the cache hierarchy, this access 
pattern does not work as efficiently; each work-item refetches cache lines 
that were already brought in by earlier work-items but were evicted from the 
cache hierarchy before being used. Note that AMD CPUs typically provide 
512k to 2 MB of L2+L3 cache for each compute unit.

• CPUs do not contain any hardware resources specifically designed to 
accelerate local memory accesses. On a CPU, local memory is mapped to 
the same cacheable DRAM used for global memory, and there is no 
performance benefit from using the __local qualifier. The additional memory 
operations to write to LDS, and the associated barrier operations can reduce 
performance. One notable exception is when local memory is used to pack 
values to avoid non-coalesced memory patterns.

• CPU devices only support a small number of hardware threads, typically two 
to eight. Small numbers of active work-group sizes reduce the CPU switching 
overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers 
are encouraged to write the algorithm using float4 vectorization. The GPU is 
more sensitive to algorithm tuning; it also has higher peak performance potential. 
Thus, one strategy is to target optimizations to the GPU and aim for reasonable 
performance on the CPU. For peak performance on all devices, developers can 
choose to use conditional compilation for key code loops in the kernel, or in some 
cases even provide two separate kernels. Even with device-specific kernel 
optimizations, the surrounding host code for allocating memory, launching 
kernels, and interfacing with the rest of the program generally only needs to be 
written once.

Another approach is to leverage a CPU-targeted routine written in a standard 
high-level language, such as C++. In some cases, this code path may already 
exist for platforms that do not support an OpenCL device. The program uses 
OpenCL for GPU devices, and the standard routine for CPU devices. Load-
balancing between devices can still leverage the techniques described in 
Section 3.7.3, “Partitioning Work for Multiple Devices,” page 3-35.
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3.7.6 Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can 
contain multiple devices. Thus, developers must choose whether to place all 
devices in the same context or create a new context for each device. Generally, 
it is easier to extend a context to support additional devices rather than 
duplicating the context for each device: buffers are allocated at the context level 
(and automatically across all devices), programs are associated with the context, 
and kernel compilation (via clBuildProgram) can easily be done for all devices 
in a context. However, with current OpenCL implementations, creating a separate 
context for each device provides more flexibility, especially in that buffer 
allocations can be targeted to occur on specific devices. Generally, placing the 
devices in the same context is the preferred solution.
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3.8 Instruction Selection Optimizations

3.8.1 Instruction Bandwidths

Table 3.10 lists the throughput of instructions for GPUs.

Table 3.10 Instruction Throughput (Operations/Cycle for Each Stream 
Processor) 

Note that single precision MAD operations have five times the throughput of the 
double-precision rate, and that double-precision is only supported on the AMD 
Radeon™ HD69XX devices. The use of single-precision calculation is 
encouraged, if that precision is acceptable. Single-precision data is also half the 
size of double-precision, which requires less chip bandwidth and is not as 
demanding on the cache structures.

Rate (Operations/Cycle) for each Stream 
Processor

Instruction

Non-Double-Precision-
Capable (Evergreen and 

later) Devices

Double-Precision-
Capable Devices 
(Evergreen and 

later)

Single Precision
FP Rates

SPFP FMA 0 4

SPFP MAD 5 5

ADD 5 5

MUL 5 5

INV 1 1

RQSRT 1 1

LOG 1 1

Double Precision
FP Rates

FMA 0 1

MAD 0 1

ADD 0 2

MUL 0 1

INV (approx.) 0 1

RQSRT (approx.) 0 1

Integer
Instruction

Rates

MAD 1 1

ADD 5 5

MUL 1 1

Bit-shift 5 5

Bitwise XOR 5 5

Conversion
Float-to-Int 1 1

Int-to-Float 1 1

24-Bit Integer
Inst Rates

MAD 5 5

ADD 5 5

MUL 5 5
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Generally, the throughput and latency for 32-bit integer operations is the same 
as for single-precision floating point operations. 

24-bit integer MULs and MADs have five times the throughput of 32-bit integer 
multiplies. 24-bit unsigned integers are natively supported only on the Evergreen 
family of devices and later. Signed 24-bit integers are supported only on the 
Northern Island family of devices and later. The use of OpenCL built-in functions 
for mul24 and mad24 is encouraged. Note that mul24 can be useful for array 
indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases 
where it is known that no overflow will occur, some algorithms may be able to 
effectively pack 2 to 4 values into the 32-bit registers natively supported by the 
hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE-
compliant add; it has the same accuracy as two separate MUL/ADD operations. 
No special compiler flags are required for the compiler to convert separate 
MUL/ADD operations to use the MAD instruction.

Table 3.10 shows the throughput for each stream processing core. To obtain the 
peak throughput for the whole device, multiply the number of stream cores and 
the engine clock. For example, according to Table 3.10, a Cypress device can 
perform two double-precision ADD operations/cycle in each stream core. An ATI 
Radeon HD 5870 GPU has 320 Stream Cores and an engine clock of 850 MHz, 
so the entire GPU has a throughput rate of (2*320*850 MHz) = 544 GFlops for 
double-precision adds.

3.8.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing. 
Notably, the sum-of-absolute differences (SAD) operation is widely used in 
motion estimation algorithms. For a brief listing and description of the AMD media 
operations, see the Extensions appendix of the AMD OpenCL User Guide.

3.8.3 Math Libraries

OpenCL supports two types of math library operation: native_function() and 
function(). Native_functions are generally supported in hardware and can run 
substantially faster, although at somewhat lower accuracy. The accuracy for the 
non-native functions is specified in section 7.4 of the OpenCL Specification. The 
accuracy for the native functions is implementation-defined. Developers are 
encouraged to use the native functions when performance is more important than 
precision. Table 3.11 lists the native speedup factor for certain functions.

Table 3.11 Native Speedup Factor

Function Native Speedup Factor

sin() 27.1x

cos() 34.2x

tan() 13.4x
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3.8.4 VLIW and SSE Packing

Each stream core in the AMD GPU is programmed with a five-wide (or four-wide, 
depending on the GPU type) VLIW instruction. Efficient use of the GPU hardware 
requires that the kernel contain enough parallelism to fill all five processing 
elements; serial dependency chains are scheduled into separate instructions. A 
classic technique for exposing more parallelism to the compiler is loop unrolling. 
To assist the compiler in disambiguating memory addresses so that loads can be 
combined, developers should cluster load and store operations. In particular, re-
ordering the code to place stores in adjacent code lines can improve 
performance. Figure 3.7 shows an example of unrolling a loop and then 
clustering the stores.

Figure 3.7 Unmodified Loop

Figure 3.8 is the same loop unrolled 4x. 

exp() 4.0x

exp2() 3.4x

exp10() 5.2x

log() 12.3x

log2() 11.3x

log10() 12.8x

sqrt() 1.8x

rsqrt() 6.4x

powr() 28.7x

divide() 4.4x

__kernel void loopKernel1A(int loopCount,
                         global float *output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=1) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        output[gid+i] = Velm0;
    }
}
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Figure 3.8 Kernel Unrolled 4X

Figure 3.9 shows and example of an unrolled loop with clustered stores.

Figure 3.9 Unrolled Loop with Stores Clustered

Unrolling the loop to expose the underlying parallelism typically allows the GPU 
compiler to pack the instructions into the slots in the VLIW word. For best results, 
unrolling by a factor of at least 5 (perhaps 8 to preserve power-of-two factors) 
may deliver best performance. Unrolling increases the number of required 
registers, so some experimentation may be required.

The CPU back-end requires the use of vector types (float4) to vectorize and 
generate packed SSE instructions. To vectorize the loop above, use float4 for the 

__kernel void loopKernel2A(int loopCount,
                         global float * output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=4) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        output[gid+i] = Velm0;

        float Velm1 = (input[i+1] * 6.0 + 17.0);
        output[gid+i+1] = Velm1;

        float Velm2 = (input[i+2] * 6.0 + 17.0);
        output[gid+i+2] = Velm2;

        float Velm3 = (input[i+3] * 6.0 + 17.0);
        output[gid+i+3] = Velm3;
    }
}

__kernel void loopKernel3A(int loopCount,
                         global float *output, 
                         global const float * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=4) {
        float Velm0 = (input[i] * 6.0 + 17.0);
        float Velm1 = (input[i+1] * 6.0 + 17.0);
        float Velm2 = (input[i+2] * 6.0 + 17.0);
        float Velm3 = (input[i+3] * 6.0 + 17.0);

        output[gid+i+0] = Velm0;
        output[gid+i+1] = Velm1;
        output[gid+i+2] = Velm2;
        output[gid+i+3] = Velm3;
    }
}
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array arguments. Obviously, this transformation is only valid in the case where 
the array elements accessed on each loop iteration are adjacent in memory. The 
explicit use of float4 can also improve the GPU performance, since it clearly 
identifies contiguous 16-byte memory operations that can be more efficiently 
coalesced.

Figure 3.10 is an example of an unrolled kernel that uses float4 for vectorization.

Figure 3.10 Unrolled Kernel Using float4 for Vectorization

3.8.5 Compiler Optimizations

The OpenCL compiler currently recognizes a few patterns and transforms them 
into a single instruction. By following these patterns, a developer can generate 
highly efficient code. The currently accepted patterns are:

• Bitfield extract on signed/unsigned integers.

(A >> B) & C ==> [u]bit_extract

where

– B and C are compile time constants,

– A is a 8/16/32bit integer type, and

– C is a mask.

• Bitfield insert on signed/unsigned integers

((A & B) << C) | ((D & E) << F ==> ubit_insert

where

– B and E have no conflicting bits (B^E == 0),

– B, C, E, and F are compile-time constants, and 

– B and E are masks.

– The first bit set in B is greater than the number of bits in E plus the first 
bit set in E, or the first bit set in E is greater than the number of bits in 
B plus the first bit set in B.

– If B, C, E, or F are equivalent to the value 0, this optimization is also 
supported.

__kernel void loopKernel4(int loopCount,
                         global float4 *output, 
                         global const float4 * input)
{
    uint gid = get_global_id(0);

    for (int i=0; i<loopCount; i+=1) {
        float4 Velm = input[i] * 6.0 + 17.0;

        output[gid+i] = Velm;
    }
}
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3.9 Clause Boundaries

AMD GPUs groups instructions into clauses. These are broken at control-flow 
boundaries when: 

• the instruction type changes (for example, from FETCH to ALU), or 

• if the clause contains the maximum amount of operations (the maximum size 
for an ALU clause is 128 operations). 

ALU and LDS access instructions are placed in the same clause. FETCH, 
ALU/LDS, and STORE instructions are placed into separate clauses. 

The GPU schedules a pair of wavefronts (referred to as the “even” and “odd” 
wavefront). The even wavefront executes for four cycles (each cycle executes a 
quarter-wavefront); then, the odd wavefront executes for four cycles. While the 
odd wavefront is executing, the even wavefront accesses the register file and 
prepares operands for execution. This fixed interleaving of two wavefronts allows 
the hardware to efficiently hide the eight-cycle register-read latencies.

With the exception of the special treatment for even/odd wavefronts, the GPU 
scheduler only switches wavefronts on clause boundaries. Latency within a 
clause results in stalls on the hardware. For example, a wavefront that generates 
an LDS bank conflict stalls on the compute unit until the LDS access completes; 
the hardware does not try to hide this stall by switching to another available 
wavefront. 

ALU dependencies on memory operations are handled at the clause level. 
Specifically, an ALU clause can be marked as dependent on a FETCH clause. 
All FETCH operations in the clause must complete before the ALU clause begins 
execution. 

Switching to another clause in the same wavefront requires approximately 40 
cycles. The hardware immediately schedules another wavefront if one is 
available, so developers are encouraged to provide multiple wavefronts/compute 
unit. The cost to switch clauses is far less than the memory latency; typically, if 
the program is designed to hide memory latency, it hides the clause latency as 
well.

The address calculations for FETCH and STORE instructions execute on the 
same hardware in the compute unit as do the ALU clauses. The address 
calculations for memory operations consumes the same executions resources 
that are used for floating-point computations.

• The ISA dump shows the clause boundaries. See the example shown below. 

For more information on clauses, see the AMD Evergreen-Family ISA Microcode 
And Instructions (v1.0b) and the AMD R600/R700/Evergreen Assembly 
Language Format documents.

The following is an example disassembly showing clauses. There are 13 clauses 
in the kernel. The first clause is an ALU clause and has 6 instructions.
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00 ALU_PUSH_BEFORE: ADDR(32) CNT(13) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15) 

 0  x: MOV         R3.x,  KC0[0].x      

 y: MOV         R2.y,  KC0[0].y      

 z: MOV         R2.z,  KC0[0].z      

 w: MOV         R2.w,  KC0[0].w      

 1  x: MOV         R4.x,  KC0[2].x      

 y: MOV         R2.y,  KC0[2].y      

 z: MOV         R2.z,  KC0[2].z      

 w: MOV         R2.w,  KC0[2].w      

 t: SETGT_INT   R5.x,  PV0.x,  0.0f      

 2  t: MULLO_INT   ____,  R1.x,  KC1[1].x      

 3  y: ADD_INT     ____,  R0.x,  PS2      

4  x: ADD_INT     R0.x,  PV3.y,  KC1[6].x      

5  x: PREDNE_INT  ____,  R5.x,  0.0f      UPDATE_EXEC_MASK UPDATE_PRED 

01 JUMP  POP_CNT(1) ADDR(12) 

02 ALU: ADDR(45) CNT(5) KCACHE0(CB1:0-15) 

6  z: LSHL        ____,  R0.x,  (0x00000002, 2.802596929e-45f).x      

7  y: ADD_INT     ____,  KC0[1].x,  PV6.z      

 8  x: LSHR        R1.x,  PV7.y,  (0x00000002, 2.802596929e-45f).x      

03 LOOP_DX10 i0 FAIL_JUMP_ADDR(11) 

04 ALU: ADDR(50) CNT(4) 

 9  x: ADD_INT     R3.x,  -1,  R3.x      

 y: LSHR        R0.y,  R4.x,  (0x00000002, 2.802596929e-45f).x      

 t: ADD_INT     R4.x,  R4.x,  (0x00000004, 5.605193857e-45f).y      

05 WAIT_ACK:  Outstanding_acks <= 0 

06 TEX: ADDR(64) CNT(1) 

10  VFETCH R0.x___, R0.y, fc156  MEGA(4) 

 FETCH_TYPE(NO_INDEX_OFFSET) 

07 ALU: ADDR(54) CNT(3) 

11  x: MULADD_e    R0.x,  R0.x,  (0x40C00000, 6.0f).y,  (0x41880000, 17.0f).x      

 t: SETE_INT    R2.x,  R3.x,  0.0f      

08 MEM_RAT_CACHELESS_STORE_RAW_ACK: RAT(1)[R1].x___, R0, ARRAY_SIZE(4)  MARK  VPM 

09 ALU_BREAK: ADDR(57) CNT(1) 

12  x: PREDE_INT   ____,  R2.x,  0.0f      UPDATE_EXEC_MASK UPDATE_PRED 

10 ENDLOOP i0 PASS_JUMP_ADDR(4) 

11 POP (1) ADDR(12) 

12 NOP NO_BARRIER 

END_OF_PROGRAM
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3.10 Additional Performance Guidance

This section is a collection of performance tips for GPU compute and AMD-
specific optimizations.

3.10.1 Loop Unroll pragma

The compiler directive #pragma unroll <unroll-factor> can be placed 
immediately prior to a loop as a hint to the compiler to unroll a loop. <unroll-
factor> must be a positive integer, 1 or greater. When <unroll-factor> is 1, 
loop unrolling is disabled. When <unroll-factor> is 2 or greater, the compiler 
uses this as a hint for the number of times the loop is to be unrolled.

Examples for using this loop follow.

No unrolling example:

#pragma unroll 1
for (int i = 0; i < n; i++) {
...
}

Partial unrolling example:

#pragma unroll 4
for (int i = 0; i < 128; i++) {
...
}

Currently, the unroll pragma requires that the loop boundaries can be determined 
at compile time. Both loop bounds must be known at compile time. If n is not 
given, it is equivalent to the number of iterations of the loop when both loop 
bounds are known. If the unroll-factor is not specified, and the compiler can 
determine the loop count, the compiler fully unrolls the loop. If the unroll-factor is 
not specified, and the compiler cannot determine the loop count, the compiler 
does no unrolling. 

3.10.2 Memory Tiling

There are many possible physical memory layouts for images. AMD devices can 
access memory in a tiled or in a linear arrangement.

• Linear – A linear layout format arranges the data linearly in memory such 
that element addresses are sequential. This is the layout that is familiar to 
CPU programmers. This format must be used for OpenCL buffers; it can be 
used for images.

• Tiled – A tiled layout format has a pre-defined sequence of element blocks 
arranged in sequential memory addresses (see Figure 3.11 for a conceptual 
illustration). A microtile consists of ABIJ; a macrotile consists of the top-left 
16 squares for which the arrows are red. Only images can use this format. 
Translating from user address space to the tiled arrangement is transparent 
to the user. Tiled memory layouts provide an optimized memory access 
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pattern to make more efficient use of the RAM attached to the GPU compute 
device. This can contribute to lower latency.

Figure 3.11 One Example of a Tiled Layout Format

Memory Access Pattern – 

Memory access patterns in compute kernels are usually different from those in 
the pixel shaders. Whereas the access pattern for pixel shaders is in a 
hierarchical, space-filling curve pattern and is tuned for tiled memory 
performance (generally for textures), the access pattern for a compute kernel is 
linear across each row before moving to the next row in the global id space. This 
has an effect on performance, since pixel shaders have implicit blocking, and 
compute kernels do not. If accessing a tiled image, best performance is achieved 
if the application tries to use workgroups as a simple blocking strategy.

3.10.3 General Tips

• Using dynamic pointer assignment in kernels that are executed on the GPU 
cause inefficient code generation.

• Many OpenCL specification compiler options that are accepted by the AMD 
OpenCL compiler are not implemented. The implemented options are -D,
-I, w, Werror, -clsingle-precision-constant, -cl-opt-disable, and 
-cl-fp32-correctly-rounded-divide-sqrt.

• Avoid declaring global arrays on the kernel’s stack frame as these typically 
cannot be allocated in registers and require expensive global memory 
operations.

• Use predication rather than control-flow.  The predication allows the GPU to 
execute both paths of execution in parallel, which can be faster than 
attempting to minimize the work through clever control-flow. The reason for 
this is that if no memory operation exists in a ?: operator (also called a 
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ternary operator), this operation is translated into a single cmov_logical 
instruction, which is executed in a single cycle. An example of this is: 

If (A>B) {
 C += D;
} else {
 C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;
C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of 
CF clauses, each taking ~40 cycles. The math inside the control flow adds 
two cycles if the control flow is divergent, and one cycle if it is not. This code 
executes in ~120 cycles.

In the second block of code, the ?: operator executes in an ALU clause, so 
no extra CF instructions are generated. Since the instructions are sequentially 
dependent, this block of code executes in three cycles, for a ~40x speed 
improvement. To see this, the first cycle is the (A>B) comparison, the result 
of which is input to the second cycle, which is the cmov_logical factor, bool, 
1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio 
between CF clauses and ALU instructions is low, this is a good pattern to 
remove the control flow.

• Loop Unrolling

– OpenCL kernels typically are high instruction-per-clock applications. 
Thus, the overhead to evaluate control-flow and execute branch 
instructions can consume a significant part of resource that otherwise 
can be used for high-throughput compute operations.

– The AMD OpenCL compiler performs simple loop unrolling optimizations; 
however, for more complex loop unrolling, it may be beneficial to do this 
manually. 

• If possible, create a reduced-size version of your data set for easier 
debugging and faster turn-around on performance experimentation. GPUs do 
not have automatic caching mechanisms and typically scale well as 
resources are added. In many cases, performance optimization for the 
reduced-size data implementation also benefits the full-size algorithm.

• When tuning an algorithm, it is often beneficial to code a simple but accurate 
algorithm that is retained and used for functional comparison. GPU tuning 
can be an iterative process, so success requires frequent experimentation, 
verification, and performance measurement. 

• The profiler and analysis tools report statistics on a per-kernel granularity. To 
narrow the problem further, it might be useful to remove or comment-out 
sections of code, then re-run the timing and profiling tool.
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• Writing code with dynamic pointer assignment should be avoided on the 
GPU. For example:

kernel void dyn_assign(global int* a, global int* b, global int* c)
{

global int* d;
size_t idx = get_global_id(0);
if (idx & 1) {

d = b;
} else {

d = c;
}
a[idx] = d[idx];

}

This is inefficient because the GPU compiler must know the base pointer that 
every load comes from and in this situation, the compiler cannot determine 
what ‘d’ points to. So, both B and C are assigned to the same GPU resource, 
removing the ability to do certain optimizations. 

• If the algorithm allows changing the work-group size, it is possible to get 
better performance by using larger work-groups (more work-items in each 
work-group) because the workgroup creation overhead is reduced. On the 
other hand, the OpenCL CPU runtime uses a task-stealing algorithm at the 
work-group level, so when the kernel execution time differs because it 
contains conditions and/or loops of varying number of iterations, it might be 
better to increase the number of work-groups. This gives the runtime more 
flexibility in scheduling work-groups to idle CPU cores. Experimentation might 
be needed to reach optimal work-group size.

• Since the AMD OpenCL runtime supports only in-order queuing, using 
clFinish() on a queue and queuing a blocking command gives the same 
result. The latter saves the overhead of another API command.

For example:

clEnqueueWriteBuffer(myCQ, buff, CL_FALSE, 0, buffSize, input, 0, NULL, 
NULL); 

clFinish(myCQ);  

is equivalent, for the AMD OpenCL runtime, to:

 clEnqueueWriteBuffer(myCQ, buff, CL_TRUE, 0, buffSize, input, 0, NULL, 
NULL); 

3.10.4 Guidance for CUDA Programmers Using OpenCL

• Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors 
have documents describing how to do this, including AMD: 

http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

• Some specific performance recommendations which differ from other GPU 
architectures:

– Use a workgroup size that is a multiple of 64. CUDA code can use a 
workgroup size of 32; this uses only half the available compute resources 
on an ATI Radeon HD 5870 GPU.
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– Vectorization can lead to substantially greater efficiency. The 
ALUPacking counter provided by the Profiler can track how well the 
kernel code is using the five-wide (or four-wide, depending on the GPU 
type) VLIW unit. Values below 70 percent may indicate that 
dependencies are preventing the full use of the processor. For some 
kernels, vectorization can be used to increase efficiency and improve 
kernel performance.

– AMD GPUs have a very high single-precision flops capability (2.72 
teraflops in a single ATI Radeon HD 5870 GPU). Algorithms that benefit 
from such throughput can deliver excellent performance on AMD 
hardware.

3.10.5 Guidance for CPU Programmers Using OpenCL to Program GPUs

OpenCL is the industry-standard toolchain for programming GPUs and parallel 
devices from many vendors. It is expected that many programmers skilled in 
CPU programming will program GPUs for the first time using OpenCL. This 
section provides some guidance for experienced programmers who are 
programming a GPU for the first time. It specifically highlights the key differences 
in optimization strategy.

• Study the local memory (LDS) optimizations. These greatly affect the GPU 
performance. Note the difference in the organization of local memory on the 
GPU as compared to the CPU cache. Local memory is shared by many 
work-items (64 on Cypress). This contrasts with a CPU cache that normally 
is dedicated to a single work-item. GPU kernels run well when they 
collaboratively load the shared memory.

• GPUs have a large amount of raw compute horsepower, compared to 
memory bandwidth and to “control flow” bandwidth. This leads to some high-
level differences in GPU programming strategy.

– A CPU-optimized algorithm may test branching conditions to minimize 
the workload. On a GPU, it is frequently faster simply to execute the 
workload.

– A CPU-optimized version can use memory to store and later load pre-
computed values. On a GPU, it frequently is faster to recompute values 
rather than saving them in registers. Per-thread registers are a scarce 
resource on the CPU; in contrast, GPUs have many available per-thread 
register resources.

• Use float4 and the OpenCL built-ins for vector types (vload, vstore, etc.). 
These enable the AMD OpenCL implementation to generate efficient, packed 
SSE instructions when running on the CPU. Vectorization is an optimization 
that benefits both the AMD CPU and GPU.
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3.10.6 Optimizing Kernel Code

3.10.6.1  Using Vector Data Types

The CPU contains a vector unit, which can be efficiently used if the developer is 
writing the code using vector data types. 

For architectures before Bulldozer, the instruction set is called SSE, and the 
vector width is 128 bits. For Bulldozer, there the instruction set is called AVX, for 
which the vector width is increased to 256 bits.

Using four-wide vector types (int4, float4, etc.) is preferred, even with Bulldozer. 

3.10.6.2  Local Memory

The CPU does not benefit much from local memory; sometimes it is detrimental 
to performance. As local memory is emulated on the CPU by using the caches, 
accessing local memory and global memory are the same speed, assuming the 
information from the global memory is in the cache.

3.10.6.3  Using Special CPU Instructions

The Bulldozer family of CPUs supports FMA4 instructions, exchanging 
instructions of the form a*b+c with fma(a,b,c) or mad(a,b,c) allows for the use 
of the special hardware instructions for multiplying and adding.

There also is hardware support for OpenCL functions that give the new hardware 
implementation of rotating.

For example:

sum.x += tempA0.x * tempB0.x + tempA0.y * tempB1.x + tempA0.z * tempB2.x + 
tempA0.w * tempB3.x;

can be written as a composition of mad instructions which use fused multiple add 
(FMA): 

sum.x += mad(tempA0.x, tempB0.x, mad(tempA0.y, tempB1.x, mad(tempA0.z, 
tempB2.x, tempA0.w*tempB3.x)));

3.10.6.4  Avoid Barriers When Possible

Using barriers in a kernel on the CPU causes a significant performance penalty 
compared to the same kernel without barriers. Use a barrier only if the kernel 
requires it for correctness, and consider changing the algorithm to reduce 
barriers usage.

3.10.7 Optimizing Kernels for Evergreen and 69XX-Series GPUs

3.10.7.1  Clauses

The architecture for the 69XX series of GPUs is clause-based. A clause is similar 
to a basic block, a sequence of instructions that execute without flow control or 
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I/O. Processor efficiency is determined in large part by the number of instructions 
in a clause, which is determined by the frequency of branching and I/O at the 
source-code level. An efficient kernel averages at least 16 or 32 instructions per 
clause.

The AMD CodeXL Static Kernel Analyzer assembler listing lets you view clauses. 
Try the optimizations listed here from inside the AMD CodeXL Static Kernel 
Analyzer to see the improvements in performance.

3.10.7.2  Remove Conditional Assignments

A conditional of the form “if-then-else” generates branching and thus generates 
one or more clauses. Use the select() function to replace these structures with 
conditional assignments that do not cause branching. For example:

if(x==1) r=0.5;
if(x==2) r=1.0;

becomes

r = select(r, 0.5, x==1);
r = select(r, 1.0, x==2);

Note that if the body of the if statement contains an I/O, the if statement cannot 
be eliminated.

3.10.7.3  Bypass Short-Circuiting

A conditional expression with many terms can compile into a number of clauses 
due to the C-language requirement that expressions must short circuit. To 
prevent this, move the expression out of the control flow statement. For example:

if(a&&b&&c&&d){…}

becomes

bool cond = a&&b&&c&&d;
if(cond){…}

The same applies to conditional expressions used in loop constructs (do, while, 
for).

3.10.7.4  Unroll Small Loops

If the loop bounds are known, and the loop is small (less than 16 or 32 
instructions), unrolling the loop usually increases performance.

3.10.7.5  Avoid Nested ifs

Because the GPU is a Vector ALU architecture, there is a cost to executing an 
if-then-else block because both sides of the branch are evaluated, then one 
result is retained while the other is discarded. When if blocks are nested, the 
results are twice as bad; in general, if blocks are nested k levels deep, there 2^k 
clauses are generated. In this situation, restructure the code to eliminate nesting.
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3.10.7.6  Experiment With do/while/for Loops

for loops can generate more clauses than equivalent do or while loops. 
Experiment with these different loop types to find the one with best performance.

3.10.7.7  Do I/O With 4-Word Data

The native hardware I/O transaction size is four words (float4, int4 types). Avoid 
I/Os with smaller data, and rewrite the kernel to use the native size data. Kernel 
performance increases, and only 25% as many work items need to be 
dispatched.
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